
DARPA: Combating Asymmetric Dark UI Patterns
on Android with Run-time View Decorator

Zhaoxin Cai†, Yuhong Nan∗†, Xueqiang Wang‡, Mengyi Long†, Qihua Ou†, Min Yang§ and Zibin Zheng†
†Sun Yat-sen University, Guangzhou, Guangdong, China
‡University of Central Florid, Orlando, Florida, USA

§Fudan University, Shanghai, China
caizhx8@mail2.sysu.edu.cn, nanyh@mail.sysu.edu.cn, xueqiang.wang@ucf.edu,

{longmy5, ouqh}@mail2.sysu.edu.cn, m yang@fudan.edu.cn, zhzibin@mail.sysu.edu.cn

Abstract—It has been extensively discussed that online services,
such as shopping websites, may exploit dark user interface
(UI) patterns to mislead users into performing unwanted and
even harmful activities on the UI, e.g., subscribing to recurring
purchases unknowingly. Most recently, the growing popularity of
mobile platforms has led to an ever-extending reach of dark UI
patterns in mobile apps, leading to security and privacy risks to
end users. A systematic study of such patterns, including how
to detect and mitigate them on mobile platforms, unfortunately,
has not been conducted. In this paper, we fill the research gap by
investigating the dark UI patterns in mobile apps. Specifically, we
show the prevalence of the asymmetric dark UI patterns (AUI) in
real-world apps, and reveal their risks by characterizing the AUI
(e.g., subjects, hosts, and patterns). Then, through user studies,
we demonstrate the demand for effective solutions to mitigate the
potential risks of AUI. To meet the needs, we propose DARPA
– an end-to-end and generic CV-based solution to identify AUIs
at run-time and mitigate the risks by highlighting the AUIs with
run-time UI decoration. Our evaluation shows that DARPA is
highly accurate and introduces negligible overhead. Additionally,
running DARPA does not require any modifications to the apps
being analyzed and to the operating system.

Index Terms—mobile security, usable security, dark UI pattern

I. INTRODUCTION

Prior discussions [26], [43], [45], [52] highlighted the preva-
lence of dark user interface (UI) patterns in online services.
Using the dark UI patterns, online service providers may gain
illicit benefits by misleading users into performing unwanted
or even harmful activities, e.g., deceiving the customers of a
shopping website into signing up for recurring purchases with
a hidden subscription [43]. To help evaluate the risks, prior
studies investigated the taxonomy of dark UI patterns in a
variety of online services, e.g., online shopping [43], online
gaming [52], and website privacy settings [26], etc.
Dark UI patterns on mobile platforms. With the increasing
popularity of mobile platforms, dark UI patterns are extending
their reach to mobile apps. An example is shown in Figure 1,
the app provides two options for users, i.e., subscribing to a
promotion which can get free English-learning courses (the
large area around the eye-catching round button), or closing
the page and back to the main app content (the close button
on the top-right). In order to attract more user clicks and

* Corresponding author: Yuhong Nan

subscriptions, the app makes the user-preferred option (close
the page) hardly noticeable by adjusting the color and size of
the button, while leaving the subscribe option easily accessible.
Even worse, the size of the close button is too small that
users who intend to click the close button may accidentally
enter the subscription page since the surrounding areas of the
close button will trigger the subscription as well. While it
might not be malicious, the design of the UI definitely causes
harm to app users by negatively impacting the user experience,
especially for users with less consciousness or senior users that
are visually impaired.

Fig. 1: An example of Asymmetric Dark UI (AUI) in mobile apps.
The main content shows a fake promotion campaign (a region in
a red rectangle), and the button to close this page is hidden in the
upper-right corner (a region in a green rectangle).

Essentially, the app UI of the above example is designed
in an asymmetric way that emphasizes the UI option that
benefits the app developers (and associated stakeholders like
advertising providers), while understating or even hiding the
UI option that is preferred to end users. We call such a
pattern the asymmetric dark UI (AUI). Besides impacting app
usability, AUI may lead to severe security and privacy con-
sequences, e.g., leading to financial losses due to misleading
subscriptions, or bypassing privacy legislation with AUI that
targets privacy disclosures.
Understanding AUI in mobile apps. Given the negative
impacts of AUI on app users, to the best of our knowledge,
a systematic understanding of AUI on mobile platforms,



however, has not been conducted before. In this paper, we
fill this research gap by investigating AUI in mobile apps.

To perform this study, we first built the first-of-its-kind,
high-quality AUI dataset which consists of 1,072 manually
verified samples. These samples are collected from 632 real-
world popular apps. Based on the AUI dataset, we show the
prevalence of AUI in the real-world and reveal their risks by
analyzing the characteristics of the collected samples such as
subjects, hosts, and patterns (see Section III-A).

Further, we perform a user study to better evaluate user
perceptions of AUI. The responses from 165 participants of
mobile device users proved that AUI is indeed commonly
seen in mobile apps, and its presence introduces significant
challenges to the users since many of them frequently fall
for the misleading AUI. More importantly, most users expect
an effective countermeasure for them to detect AUI in the
first place, and highlight (or even automatically opt-in) the
preferable UI option for them (see Section III-B).
Combating AUI with DARPA. To meet users’ needs and
enhance their app experience, we propose DARPA, an end-
to-end solution for combating asymmetric Dark UI Patterns
on Android. A key step for DARPA is to effectively identify
AUI, which is challenging for several reasons. First, AUI
appears not only in the advertising context, but also in many
diverse contexts corresponding to the apps’ functionalities
(e.g., in-app purchases and promotion campaigns). Therefore,
previous approaches that focus on detecting UI problems in
a particular context (e.g., advertising [31], [39], [40], privacy
policy [30]) may not work. Second, mobile apps that host
AUI often obfuscate their code and encrypt its behaviors (e.g.,
traffic), causing challenges to mobile UI analysis techniques
that rely on UI layout code [31], [34], [49], [53], [54], and
app traffic [36], [40], [55], etc.

To overcome the challenges, we design a generic approach
using computer vision (CV) techniques, based on the obser-
vation that AUI introduces uneven visual perceptions to app
users. For this purpose, we first train a lightweight CV-model
for identifying the asymmetric UI options in AUI. Such a CV-
based identification model generalizes to different apps, as the
model is capable of identifying UIs that are visually associated
with AUI, while ignoring the specifics of UI context (e.g., app
category, language, and textual semantics on UI). Besides, this
approach is also resistant to obfuscation, as it does not require
access to app code.

By deploying the CV-based model to user devices, DARPA
identifies the AUIs at run-time and mitigates its threat by
highlighting them to users with UI decoration. This step is
non-trivial as it needs to access the UIs of other apps, which
often requires instrumenting the apps being analyzed or mod-
ifying the operating system.To circumvent such requirements,
we leverage Accessibility Service (AS), which is originally
provided by the Android platform for assisting device and
app users with disabilities [3]. We use AS to capture real-
time UIs on the user devices and feed the UIs to the model so
as to flag the AUIs. Additionally, since checking all app UIs
demand extensive computing resources, we carefully designed

our approach, e.g., the proper timing for execution, in order to
reduce its overhead. As an ultimate goal, we identify the UI
option that is preferred to end users, and highlight the option
with UI decorators. Our experiments on real-world apps show
that, compared to other alternative solutions (e.g., other CV-
models and UI-based analysis), DARPA is highly effective in
detecting AUI, and introduces low and negligible overhead to
end users. Lastly, to benefit future research, we release the
AUI dataset used in our research, as well as the source code
and artifacts of DARPA1.

In summary, this paper makes the following contributions:
• We perform the first in-depth understanding of the asym-

metric dark UI patterns in mobile apps. We demonstrate
the high demand for effective solutions to mitigate the
potential risks of AUI through a user study.

• We design and implement DARPA, the first generic,
lightweight framework, which combines CV and Acces-
sibility Service to enhance app usability against AUI for
Android devices.

• We perform a thorough evaluation to show DARPA
is highly effective without incurring observable perfor-
mance overhead.

II. BACKGROUND AND MOTIVATION

In this section, we present more background knowledge,
including key terminologies for describing Asymmetric Dark
UI (AUI), the causes and consequences of AUI, as well as
related techniques used in our research.

A. Asymmetric Dark UI (AUI) Pattern

A prominent type of dark UI in mobile apps is the visually
Asymmetric UI, in which an app intentionally manipulates UI
options in favor of developers, while downplaying UI options
of interest to users. For ease of description and reference, we
give the following two definitions for the UI options.
• App-guided Option (AGO). App-guided Option refers

to the UI options, such as buttons or icons, that are beneficial
to app developers, and intentionally made visually appealing
to app users. Typical examples of AGO are those buttons
that trigger advertising pages to add financial gain for app
developers. To attract more users to click, the AGOs could be
carefully crafted to have a larger clickable area, be centered
on the screen, and have a significant color contrast with other
content. In some cases, utilizing human psychology, AGO can
even be visually deceptive or misleading.
• User-preferred Option (UPO). User-preferred Option

represents the UI options that meet the expectations of app
users. Examples of UPOs are skipping the advertising page,
or proceeding without choosing additional services during
product purchase. In the AUI, to avoid the users from selecting
this option, a UPO is intentionally designed in a way that is
barely noticeable (e.g., has high transparency to the surround-
ing backgrounds), or is located in an area that requires more
effort to reach (e.g., in the corners of the screen).

1 https://github.com/DARPA-4-AUI
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Causes and consequences of AUI. The root cause of AUI is
that most apps are provided for free. Therefore, app developers
are financially motivated to deploy AUIs to gain more revenues
through ways such as subscriptions, advertising clicks, and
purchasing rebates. Unfortunately, such a design of AUI may
significantly reduce app user experience, and most importantly,
result in harm to user interests, e.g., “stealing” money or
private information from users with AGOs associated with
purchasing and privacy disclosure.

Different from fraud advertisements which are explicitly
prohibited by regulators [7], [8], [12], the legitimacy of
AUIs often falls into the gray area [33]. Besides, due to the
high volume of mobile apps and their dynamic nature (e.g.,
frequently updated), it is hard for app distributors/markets
to practically regulate AUIs with policy enforcement. This
situation gets particularly worse in app markets which are
less regulated. For example, previous research has shown that
apps distributed other than Google Play tend to contain more
harmful behaviors [54].

B. Accessibility Service

Accessibility Service (AS) [3] is a service provided by
the official Android SDK for app developers to provide
interactive help for app users with disabilities (such as visually
impaired people). Essentially, AS is a system service with high
privileges, which can perform many sensitive operations on
the Android system. As one of its many powerful features,
AS can listen to a set of UI events and act on them. It
can also instrument the UIs of running apps. Due to its
powerful capability, AS has become a popular attack surface
that is abused by malware to obtain sensitive capabilities [35],
[46], [50] (e.g., intercepting user credentials). On the other
side, it has also been used by previous studies for security
enhancement purposes (e.g., fraud ad detection [31], [40]). As
we will show further in Section IV, our research also leverages
a series of AS capabilities such as monitoring system events
and taking screenshots, to improve the user experience on AUI.

C. Scope of our research

Our research focuses on AUI, a specific type of dark UI
pattern commonly used in mobile apps. Our user study and
prototype of DARPA are mainly based on the analysis of apps
in China – one of the largest mobile ecosystems in the world.
However, the concepts, techniques and insights introduced in
our research are not limited to the Chinese ecosystem, as we
analyzed the visual perceptions of AUI without distinguishing
the language of the apps. Particularly, DARPA is generic and
can detect AUIs in different languages, since it does not rely
on specific text and its natural-language semantics.

While DARPA is implemented for Android, we believe
the knowledge contributed by this research is generic and
transferable to other mobile platforms, due to the consistent
patterns of AUI and the UI similarity across different plat-
forms. Particularly, DARPA provides a generic method for
visually identifying and labeling AUIs, which is platform-
agnostic. Similar to Android, other platforms such as iOS also

provide accessibility features [21], [22]. Therefore, adopting
DARPA to other platforms is technically feasible.

We make several designs to ensure security of DARPA,
since it detects AUI using privacy-sensitive user screenshots.
For example, DARPA asks for minimal permissions (e.g.,
no Internet permission), and stores all screenshots locally
and discard them immediately after use (see discussions in
Section IV-E). We assume that the supply chain of DARPA is
not compromised. Thus, adversaries can not directly break the
above security designs. We also assume that the Android OS
is not compromised, and DARPA is always protected by OS
security features, such as app-level sandboxing. Considering
the minimized attack surfaces and the protections in place,
we believe it is difficult for an external adversary to exploit
DARPA (e.g., via buffer overflow) and perform malicious
behaviors.

III. UNDERSTANDING ASYMMETRIC UI DARK PATTERNS

A. AUIs in the Wild

To better understand the patterns of AUIs in the wild, we
collect a dataset of real-world apps and an AUI dataset (i.e.,
screenshots) from these apps through a large-scale and semi-
automatic analysis.
• App dataset (Dapp) To build the AUI dataset, we

first crawled 632 popular apps from the leaderboard of Mi
Store [18] (one of the most popular app stores in China) in
June 2022. These apps span a variety of categories, including
banking, instant messaging, social media, and utilities, etc.
• AUI dataset (Daui) We use a mix of automatic testing

and manual verification over the apps in Dapp to collect the
AUI dataset. Specifically, we ran each of the apps in Dapp for
1 minute with Monkey, and automatically gathered all their
screenshots. Additionally, to increase coverage of our dataset,
we crawled huaban.com [10] – a UX designer website that
contains over 100,000 real app screenshots. We gathered a
total of 8,855 screenshots, with 7,884 by running the apps
and 971 from huaban.com. We further asked 5 researchers to
review these screenshots and label those containing AUIs. In
total, we obtained 1,072 AUI screenshots that are labeled by
all researchers.

TABLE I: Distribution of different types of AUI

AUI Type Number of instances Percentage
Advertisement 696 64.9%

Sales promotion 179 16.7%
Lucky money (Red packet) 131 12.2%

App upgrade 43 4.0%
Operation guide 16 1.5%

Feedback request 4 0.4%
Sensitive permission request 3 0.3%

Total 1,072 100%

Subjects of AUI. Table I shows the distribution of different
types of AUIs (according to the app context) based on our
manual classification. We noticed that most of the AUIs (696,
64.9%) are posted by advertising providers for the purpose
of recommending online products, services, and apps to app
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(a) Advertisement (b) Sales promotion (c) Lucky money (d) App upgrade (e) Operation guide

Fig. 2: Examples of each type of AUI discovered in our research.

users2. While these AUIs are often not immediately harmful to
users, they can mislead them to perform unexpected activities.
As an example shown in Figure 2a, a product is promoted
with an extremely low price. However, an interested user
could be redirected to a new page that is not aligned with
the statements shown in the advertisement. Following the
advertisement are the sales promotion AUI, which accounts
for 179 (16.7%) AUIs in our dataset. In such AUIs, the apps
launch in-app promotion campaigns to promote their own
services. For example, a user that fails to click the UPO shown
in Figure 2(b) will be redirected to an external page asking
him/her to submit personal contact information (e.g., email,
phone number) and then subscribe to the promotion. Another
popular type of AUIs is the 131 (12.2%) lucky money AUIs.
These AUIs are similar to sales promotion, but the app claims
users will be rewarded with real money for specific actions
they take, e.g., downloading/installing an app, playing a game,
registering a new account, etc. Unfortunately, the cash reward
could be very difficult to obtain due to various restrictions
setup by app vendors. The remaining AUIs are related to the
operation guides provided by apps, requesting feedback for
the apps or services, asking app users for permissions to carry
out security/privacy operations, etc. Figure 2 shows part of the
AUI examples for different AUI types3.
Hosts of AUI. For each AUI, it may either comes from
the app itself, or from third-party components which are
integrated by the app. Based on the distributions of AUIs in
our collected samples, it can be seen that around 35.1% (376
out of 1,072) AUIs are designed by app developers themselves.
In addition, for the rest 64.9% AUIs from third-party libraries
(i.e., advertisements), the apps hosting these ads may even not
aware such ads are hurting user experiences of their customers.
Layout patterns of AUI. We perform a statistical analysis to
show the layout patterns of the two essential AUI options, i.e.,
App-guided Option (AGO) and User-preferred Option (UPO).
Our analysis showed that most (94.6%) of the AUIs place the

2As required by regulation, an advertisement must explicitly indicate its
identity by placing the term “advertisement” on its ad content. While in most
cases, this indicator is barely noticeable by app users due to the very small
font size and ambiguous color contrast to the surrounding background, it is
sufficient for us to manually classify the screenshot as an advertisement.

3More examples for each AUI type can be accessed in our project reposi-
tory: https://github.com/DARPA-4-AUI/paper data/tree/master/AUI examples

AGO in the central area of the UI. In contrast, 73.1% AUIs
with a UPO place the UPO on the corner of the UI (similar to
the upper right corner as in Figure 1). For the remaining AUIs,
while the UPOs are not in the corner, they are not visually as
significant as the AGOs. As shown in Figure 2d, the option
that closes an app upgrade request window is much smaller in
size compared to the option that upgrades the app (the button
in yellow).

B. Understanding User Perceptions to AUI

To better understand user perceptions of AUI, we design a
user study by asking about users’ experiences of interacting
with AUI. Particularly, the study aims to find out (1) how users
think of AUI, (2) how users deal with AUI, and (3) what are
the user expectations for alleviating the negative impact of
AUI. The feedback collected from the user study confirmed
that app user experience is indeed affected by AUI, and it is
necessary to provide practical solutions against AUI.

Design of the user study. The study contains three parts that
have 12 questions in total. At the beginning of the survey,
we present two typical AUI examples to help participants
quickly understand the context of our study. Then, we ask the
participants “if they feel the two UIs presented are misleading
and could lead to unintended clicks” (Q1). Then, we asked the
participants whether they have past experiences of clicking the
unintended UI option during their everyday use of apps, and
if so, how often that happens (Q2).

The second part of the study (Q3-Q5) aims at getting
a quantitative measurement about the easiness for users to
identify the UI options in AUIs, i.e., accessibility of the AGOs
and UPOs. More specifically, we randomly select another three
AUI examples and ask users to give accessibility ratings (with
a score from 1 to 10) for the AGOs and UPOs shown on
these UIs. Here, a higher rating means the UI options can
be easily identified, while a lower rating means the options
are hard to identify. In addition, we ask app users which
scenarios are more likely to cause unintended clicks (Q6),
their emotions when the unintended clicks happen (Q7), and
users’ experiences of using apps from different countries, e.g.,
whether they experience the same amount of AUIs while using
apps from China and other countries (Q8).
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The third part of the study is designed to understand users’
expected countermeasures for AUI (Q9-Q12). Specifically,
we ask users how they thought the UIs should be properly
designed, whether it is necessary for the mobile OS to make
the UI options more accessible, and if so, what are users’
preferred design choices, i.e., highlight the UI options, or
directly skip the UIs to avoid unintended clicks, etc.

Finally, we collect the participants’ demographics such as
their age range and educational background. Such information
helps to better evaluate the impact of AUIs on the general
public. Note that we do not collect any personally identifiable
information of the participants. Also, this study was reviewed
and approved by the ethical review board of our institution.

The survey was conducted anonymously through Wenjuanx-
ing [15], the most popular online survey service platform in
China, from November 21, 2022 to November 24, 2022. To
ensure the quality of responses collected, we set the survey
completion threshold at 90 seconds and above, to avoid any
responses from robots and careless participants (Fortunately,
all the responses are from real participants and valid). We
awarded the participants 0.5 USD for completing the survey.
In terms of the distribution of the participants, 74 of the
participants are male and the other 91 are female. The majority
(76.4%) of the participants are in the age range of 18-35. The
questions and the summarized responses of this survey are
available at: https://github.com/DARPA-4-AUI/paper data/tr
ee/master/user study.
Results and findings. We summarize the following findings
from the 165 valid responses. The vast majority (156/165,
94.5%) of the participants feel that the two AUI examples
are misleading (Q1). According to the accessibility ratings
specified by the participants (Q3-Q5), accessing the AGOs
(e.g., opening the advertisement) are significantly easier than
visiting the UPOs (e.g., skipping the advertisement). The
average rating for AGOs is 7.49 (out of 10), while the average
rating for UPOs is only 4.38. Further, 120 (72.7%) of the
participants believe that UPOs are at least equally important
as AGOs (Q9). Therefore, it looks evident that AUIs introduce
asymmetrical user experience to app users, which leads to
unexpected challenges for them to access their preferred UI
options, i.e., UPOs.

Finding 1: App users strongly agree that AUIs are
misleading.

According to the responses from Q2, most participants are
affected by such AUIs in their daily app use – 127 (77.0%)
participants stated that they often trigger unintended button
clicks, 34 (20.6%) participants stated that such cases happened
occasionally, and only 4 (2.4%) participants never triggered
unintended clicks. In addition, for the participants that trigger
such clicks, 83.0% of them (137/165) feel bothered and they
want to quickly exit the unintended UI (Q7).

Among the 112 participants that also have experienced using
apps from other countries, 86 (76.8%) of them think apps in
China tend to have more AUIs (Q8). We suspect this is mainly
caused by the fact that Chinese app stores are less regulated,

in which there are deceptive and misleading behaviors (e.g.,
ads) rarely discussed in other countries [7], [8], [12].

Finding 2: AUI indeed brings negative impacts to the
usability of apps, particularly for the apps in China.

Finally, most participants felt that it is important to have an
effective solution to provide better accessibility against such
AUIs. The average rating for having such a solution is 7.64,
with 48 participants giving a rating of 9 and above. More than
half of the participants expect the solution to highlight the
available UI options for them (e.g., making the UPOs easier
to identify).

Finding 3: Users expect practical solutions to enhance
the accessibility against AUI.

Note that, although we collected responses from over a
hundred app users, the above results can still be biased since
most participants are relatively young and well-educated (Q13-
Q14). For instance, 93.9% of the participants have a bachelor’s
or equivalent degree. These people tend to be more familiar
with mobile devices and thus less affected by AUIs than the
other user groups, e.g., senior or visually defective users.
Therefore, we believe that, in reality, there can be a much
stronger need to have an effective solution for AUIs.

IV. DESIGN OF DARPA

Given the above understanding of AUI, we present DARPA,
an end-to-end solution that detects and highlights the presence
of AUI, to meet the users’ needs (Section III-B). In this
section, we will start with design objectives and an overview
of DARPA, and then demonstrate how we meet the objectives
in the detailed design of DARPA.

A. Design Objectives and Overview

Design objectives. In order for DARPA to work on normal
user devices, we built it with the following objectives in mind:
• Generality. Given the wide variety of AUI as described

in Section III-A, DARPA should not be tailored towards
specific types of mobile apps, or specific types of UI (e.g.,
advertisement). Rather, it needs to be capable of detecting any
AUI on the user devices in a general manner.
• Easy Integration. End users should be able to integrate

DARPA easily to their devices. A straightforward solution that
analyzes other apps’ UIs may require modifications to the
operating system or rewriting the app being analyzed, because
of the presence of cross-app isolation. This requirement is
hardly met for normal users. Therefore, we expect them to
use DARPA with very minor effort, as if installing an app.
• Lightweightness. Another important consideration is the

overhead of DARPA. We need to minimize the performance
overhead to end users so as to ensure their user experiences.
• Security. DARPA can essentially monitor the app UIs of

end users, which, if not designed sensibly, may accidentally
introduce security issues such as privacy leaks. Therefore, we
need to put extra safety measures so that end users are willing
to use DARPA.
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Fig. 3: The overview of DARPA.

Design Overview. Figure 3 presents the overview of DARPA.
DARPA works as an individual app that monitors the user
interface at runtime. If an AUI is detected, it draws the corre-
sponding UI decorators to highlight user-desired information
(e.g., the UPO in AUI). As mentioned earlier, to achieve this,
DARPA utilizes the Accessibility Service (AS) which is built
in by Android for the necessary data access (e.g., UI content
parsing) and operation (view decoration). In this way, it does
not require any customized modification (i.e., framework-level
instrumentation) to the Android system.

In the first module of DARPA, we collect the app UIs that
may contain AUIs by monitoring the UI-related events. The
second module analyzes the app UIs at run-time to determine
if they indeed contain any AUI. For this purpose, we adopt
a CV-based model. Specifically, with the previously collected
AUI samples (Daui) from real apps, we train a YOLOv5 model
and port it to Android devices so that it can detect AUIs within
app UIs in real-time. The output of this module is the UPO in
an AUI. In the last module, we highlight the UPO by applying
UI decorators directly on the app screen. In the remainder of
this section, we describe each module of DARPA in detail and
demonstrate how we achieve the design objectives.

B. Collecting App UIs for Analysis

The very first step for detecting AUI is to collect the app
UIs that are displayed on the end-user devices. Conventional
methods for this task may require modifications to the An-
droid system so that DARPA can run as a privileged system
component, or rewriting the apps being analyzed so that they
can directly emit the UI information. As noted earlier, both
methods will cause integration issues for normal users. In
this study, we observed that an effective approach could be
built on top of a native service supported by Android, i.e.,
accessibility service (AS), without modifying either the system
or the apps. Specifically, AS provides a series of system
events that represent app UI updates [2], such as window
content changes (TYPE_WINDOW_CONTENT_CHANGED) and
view focused (TYPE_VIEW_FOCUSED). Once an app updates
its UI, the corresponding system events will be issued and
callbacks will be delivered to any app that subscribes to AS
events. Therefore, in DARPA, we can subscribe to all UI
updates events, and collect app UIs in the form of screenshots

after being notified by AS. Using this method, DARPA can run
as a regular app that interacts with AS via APIs provided by
the Android SDK, which greatly simplifies its integration.

However, there is a prominent challenge that prevents
DARPA from analyzing all UI updates. Our preliminary study
shows that any minor changes to a UI may lead to a newly
issued UI update event. For example, Android may generate
nearly 32 events when running Taobao [16], a popular shop-
ping app in China, for a minute. Due to the high frequency
of UI update events, DARPA may cause significant overhead
to user devices. Even worse, our study reveals that filtering
the events based on the event types is not feasible as AS
events are designed to be generic and not leak any specific UI
information, e.g., whether the UI is an AUI or not. Our solution
to resolve the challenge is straightforward yet effective: we
use DARPA to check a subset of UIs that last for a longer
period of time, based on the intuition that AUIs often need
to gain enough exposure to the app users. For this purpose,
we gather an app UI for future analysis if no new UI update
event is issued after a cut-off time period (ct). As we will
evaluate in Section VI-E, a ct value of 200ms allows DARPA
to improve efficiency and achieve good coverage of AUI at
the same time.

C. Detecting AUI from App UIs

After collecting an app UI, DARPA detects in real-time
if the UI represents an AUI that contains misleading UI
options (i.e., an AGO). This task is non-trivial given the wide
variety of AUIs (see the AUI subjects in Section III-A). Prior
studies that rely on app traffic and UI text features [31],
[40], as we will evaluate in Section VI-C, are not applicable
because of the difficulties to compile a complete list of such
features (e.g., resource and view id for advertising UI), and
the frequent adoption of obfuscation techniques that make
feature extracting challenging. We observe that, regardless of
the underlying implementations, the AUIs will always display
user options with unique visual patterns, e.g., AGO, for the
purpose of misleading the users. Thus, we can design a general
approach to identifying AUIs with a CV-based method.
Overall workflow of CV-based detection. We first build a
ground-truth AUI dataset from the screenshots of real-world
apps. We label the user options (AGO or UPO) on the AUIs
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and annotate the size and coordinates of the options. Then,
we train an object detection model on top of the ground-
truth dataset (i.e., Daui). After that, we port the model to
Android devices and use it to detect AUIs. The output of the
detection is the size, coordinates, and confidence rate of the
on-UI objects, i.e., the possibility of whether one UI object
corresponds to AGO or UPO. Note that to detect and highlight
AUI, one may consider simply identifying and labeling the
small “close button” as the UPO. However, this mechanism
would introduce a significant number of false positives, as
many normal app UIs with an small close option are actually
not AUIs (i.e., there is no AGO in such UIs) 4.
Model selection. Object detection has been studied for years
and there are various types of models that can potentially be
applied to our use case. In this study, we surveyed a series
of most commonly used models, such as two-stage detection
models (e.g., RCNN) and one-stage detection models (e.g.,
YOLO, SSD). We first checked whether the models could
run on mobile platforms, and, if not, the ease of porting
them. We found that most of the models are not natively
supported on Android, but there are off-the-shelf frameworks
to port them for mobile use. After that, we looked into another
important factor that guides our selection – the detection
speed. Our analysis shows that YOLO, a one-stage object
detection technique that first identifies the bounding boxes
of objects and classifies them based on CNN features, has
a significantly faster speed than the other alternatives. Thus,
we choose YOLOv5 [19], the currently most out-performance
implementation version of YOLO built on top of PyTorch
framework, in our DARPA implementation.
Model porting. Object detection models are often used on
GPU servers (or desktops) that are highly performant, but they
are not friendly to resource-constrained mobile devices. To
resolve the issue, we first train our model on a server and then
port it to mobile platforms using a neural network inference
framework. In DARPA, we adopt the open-source framework
proposed by Tencent, ncnn [13], which is a state-of-the-art
model for neural network computing on mobile devices. Prior
research [29] has shown that ncnn outperforms other deep
learning inference frameworks such as mnn [11], Neo [42],
since it is highly optimized for mobile platforms with ARM
CPUs. For example, compared to other deep learning models,
ncnn generates models with smaller size, and with minimal
accuracy loss. Specifically, we first convert the YOLO model
generated by the Pytorch framework [48] to ONNX format [1],
an open format for interchanging models between ML frame-
works. Then, we replace the internal redundant calculations in
the model with constants to accelerate its forwarding speed.
After that, we convert the model from ONNX format to ncnn
format, and use it as the final model. We embed the final model
in DARPA so that it could be invoked on mobile devices.
While the current design of DARPA implements ncnn for
model porting, it is not limited to this specific type of deep

4See examples in https://github.com/DARPA-4-
AUI/paper data/tree/master/not AUI

learning inference framework for our task. Altering ncnn to
other models with better effectiveness is trivial.

D. Run-time AUI Decoration

According to the user study (Section III-B), most of the
participants expect to have the available AUI options high-
lighted so that they can identify the options more easily. Upon
this request, DARPA provides a module to highlight the AUI
options with easily noticeable decorators. Essentially, we place
an additional decoration view around the bounding boxes of
the identified AUI options. By default, the decoration views
use a high-contrast color compared to the background color
of the AUI options, for the purpose of attracting the attention
of app users. We also allow users to customize the shape and
color of the decoration view.

In DARPA, we first take the screenshots of an app, and
detect the AUI options using an object detection method
(Section IV-B and IV-C). The output of the model is the
AUI options on screen, which contains the coordinates of the
options relative to the top/left corner of the whole screen.
However, when adding the decoration view to the screen,
DARPA actually expects the coordinates with respect to the app
window – a section of the screen made available to the app.
When the app is in the full-screen mode, we can safely place
decoration views right at the same coordinates as the bounding
boxes of the AUI options. However, it becomes problematic if
the app is not in full-screen mode, which is pretty common for
Android apps. For example, in Figure 4, the app only occupies
part of the screen, with a status bar on top of the app window
and a navigation bar underneath. In this case, if we use the
same coordinates as the AUI options, the decoration views will
be positioned below the actual options, e.g., by an offset of the
height of the status bar (see Figure 4(a)). To fix the problem,
we need to know the exact offset of the app window and use
it to calibrate the decoration view. However, to the best of our
knowledge, Android SDK does not provide any API that can
directly get the exact offset.
Decoration view calibration. A possible way to retrieve the
above offset is to call the View.getLocationOnScreen
API with the view object corresponding to the app window.
However, getting the view object at run-time is not possible
for DARPA since Android restricts access to the memory space
of the other apps. In our study, we overcome the challenge
by adding an unnoticeable anchor view to the very top/left
(i.e., coordinate <0,0>) of the current window. Then we
call the View.getLocationOnScreen API to check the
coordinates (i.e., offset_x, offset_y) of the anchor view
within the screen. For full-screen mode, the offset_x and
offset_y will be 0s; for the cases that the app window
occupies part of the screen, the offset_x and offset_y
represent the actual offsets of the app window with respect to
the screen. In this way, we can calibrate the decoration view
by subtracting the offsets from the coordinates of the AUI
window. In addition to decorating AUIs on screen, DARPA
also provides an alternative option that can automatically
bypass those harmful AGO. More specifically, with this option,
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(a) Run-time view decoration
without calibration.

(b) Run-time view decoration
with calibration

Fig. 4: AUI decoration while the app is not in full-screen mode

DARPA automatically sends a click event to the UPO region
and closes the AUI.

E. Security Considerations

As mentioned earlier, security concerns may arise when
end users run DARPA on their devices, as DARPA can take
screenshots of other app. In some cases, the screenshots taken
may contain sensitive user data such as user profile, chat
history, etc. To this end, we take extra measures to address the
concerns. Specifically, we put all the modules of DARPA, in-
cluding the CV-model, within an individual Android app. The
app does not request any sensitive capabilities (e.g., Internet
access and disk access) that allow it to expose sensitive data.
Further, the app stores the app screenshots in the app’s internal
storage, and rinses them immediately after running the CV-
model against them. Additionally, the app is not able to update
itself (with malicious components), without going through the
authorized app updating process, e.g., app submission, review,
and OTA updates of the app store. To meet privacy legal
compliance, DARPA also provides end users with a detailed
privacy policy, and obtains user consent to proceed when the
app is first executed.

V. IMPLEMENTATION

Fig. 5: The life-cycle of DARPA during AUI detection.

Life-cycle of DARPA runtime. Here we present the im-
plementation of DARPA at runtime, particularly its detailed
life-cycle during AUI detection and decoration.

• Event registration. As shown in Figure 5, once DARPA
starts, it first registers all 23 Accessibility Events to monitor
potential UI updates of the system. In the meantime, DARPA
sets up a 200ms delay for event notification, to avoid being

overwhelmed by those redundant UI updates not necessary for
screenshot taking.
• Event delivery. After event registration, DARPA will

passively wait for related UI events. More specifically, the
OS will announce DARPA with the corresponding event
code while any change happens on the screen. For example,
the event TYPE_WINDOWS_CHANGED corresponds to code
0x00400000.
• Taking screenshots. DARPA takes screenshots via the API

AccessibilityService.takeScreenshot. Note that
before taking screenshots, DARPA will remove its previous
AUI decoration if there is any.
• AUI detection. Each captured screenshot is directly passed

to the CV model by Native Development Kit (NDK) [20]. For
security considerations, DARPA deletes the previously taken
screenshot right after the CV model gives the detection results.
• AUI decoration. Based on the obtained coordinates (and

offsets) of the identified AUI options, DARPA uses the API
android.view.WindowManager.addView to draw the
corresponding bounding box(es) on the screen, and hence
highlights the AGO and UPO to users.
Implementation for AUI decoration. Figure 6 shows the
simplified code for AUI decoration. In line 2, we get an
instance of android.view.WindowManager and use it
for adding a decoration view to the window. Then, in lines
3-9, we set the dimension and coordinates of the decoration
view according to the information of the AUI. In lines 8-9,
obtain the coordinates of an AUI option in the main window.
Finally, in lines 10 and 11, we create the decoration view and
add it to the current window.

1 p u b l i c vo id d e c o r a t e (AUI au i , i n t o f f s e t x , i n t
o f f s e t y ) {

2 WindowManager wm = ( WindowManager ) g e t S y s t e m S e r v i c e
( C o n t e x t . WINDOW SERVICE) ;

3 WindowManager . LayoutParams l p = new WindowManager .
LayoutParams ( ) ;

4 l p . t y p e = a u i . t y p e ;
5 l p . w id th = a u i . w id th ;
6 l p . h e i g h t = a u i . h e i g h t ;
7 / / <a u i . x , a u i . y> r e p r e s e n t s t h e c o o r d i n a t e s o f an

AUI o p t i o n w. r . t t h e s c r e e n , and <l p . x , l p . y>
r e p r e s e n t s t h e c o o r d i n a t e s w. r . t t h e main
window .

8 l p . x = a u i . x − o f f s e t x ;
9 l p . y = a u i . y − o f f s e t y ;

10 ImageView decorateView = new ImageView ( t h i s ) ;
11 wm. addView ( decorateView , l p ) ;
12 }

Fig. 6: Simplified code for run-time AUI decoration

VI. EVALUATION

In this section, we report our evaluation of DARPA with
a series of experiments. Specifically, we aim to answer the
following research questions:
• RQ1: What is the overall effectiveness of DARPA in

detecting AUIs with its CV-based model?
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• RQ2: Does DARPA achieve better detection performance
compared with other alternative techniques (models)?

• RQ3: What is the performance overhead of DARPA when
it is deployed on real devices?

• RQ4: What is the proper timing for executing DARPA on
user devices?

A. Evaluation Setup

We train our CV-model on a Ubuntu 20.04 server with 512
GB RAM, 24-core Intel 8260 CPU, and 2 NVIDIA RTX 3090
GPU. Unless otherwise specified, we run all other experiments,
e.g., testing against Android apps and deploying DARPA, on
a Redmi 10 smartphone with Android 115.

To train our CV-based model for AUI detection, we use the
same AUI dataset (Daui) as elaborated on Section III-A. We
split the Daui into the training, validation, and test sets by a
ratio of 6:2:2. The distribution of each set (including the UPO
and AGO) is shown in Table II. Note that a screenshot may
have more than one UPO options (which potentially results in
a more confusing user experience given the presence of AUI).

For model training, we label the AGO and UPO options
in all the screenshots, and annotate their bounding boxes
following the format of COCO dataset [6] – a specific data
labeling format for object identification. In this way, the
screenshots are well-labeled and ready to be fed to the CV-
model.

TABLE II: Distribution of the ground-truth dataset Daui.

Set Type AGO UPO Total
Training Set 453 657 642

Validation Set 150 223 215
Testing Set 141 222 215

Total 744 1,103 1,072

B. RQ1: Effectiveness in Detecting AUIs

Evaluation metrics. As described in Section IV-C, we
train a YOLOv5 model with our ground-truth dataset Daui,
for the purpose of identifying the AGO and UPO in the
AUIs. This is essentially similar to other object detectors for
images. Therefore, we leverage a common evaluation metric,
Intersection over Union (IoU), to measure detection accuracy.
IoU represents the intersection area (I) between the ground-
truth bounding box (G) and the predicted bounding box (P),
i.e., I/(G + P − I).

To decide if our model identifies the UI options correctly, we
need a specific IoU threshold. In this study, we choose a pretty
high threshold, 0.9 (which is also adopted by [28]), since our
end-to-end solution requires us to identify the AUIs and the
UI option areas with high accuracy. We report a true positive
(TP) case once our model identifies a UI option with an IoU
over the threshold. Similarly, we report the true negative (TN),
false positive (FP), and false negative (FN) cases. Then, we

5DARPA is generic to all devices with Android version 11 and above, since
the AS module under these versions provides the screenshot API – a key
feature utilized by DARPA.

evaluate the effectiveness of our model with three metrics, i.e.,
Precision (TP/(TP+FP)), Recall (TP/(TP+FN), and F1-score
(2*TP/(2*TP+FP+FN)).

TABLE III: Overall effectiveness of DARPA.

AUI Type Precision Recall F1-score
UPO 0.901 0.852 0.876
AGO 0.815 0.802 0.808
All 0.858 0.827 0.842

Overall Effectiveness. As the first step, we train and fine-
tune the parameters of the YOLOv5 model with the training
and validation sets in Daui. Specifically, we use a batch size
of 256, and apply the Adam optimizer during training. We also
train the model multiple times with varying epochs, e.g., 500,
1,000, etc. At the same time, we observe the validation losses
and ensure this process does not incur overfitting. Eventually,
we select the model with the best fitness for training 2,500
epochs. We then integrate the model into the Redmi 10
smartphone by porting it by the ncnn inference framework
(YOLOv5-ncnn, see Section IV-C). We run YOLOv5-ncnn on
the mobile device to determine its effectiveness on the testing
set. Our experiment shows that the model can detect AUI with
a precision of 85.8%, a recall of 82.7%, and an F-score of
84.2% (Table III). Particularly, the model detects the UPOs,
which are preferred by users, with an even higher precision
(90.1%) and recall (85.2%).

We manually analyzed the causal of the FNs and FPs. The
reason for most FNs is that apps can use UPO-related buttons
that are not only small in size, but also of a transparent
background. While we were able to identify the textual data
on the buttons with a very careful review of the apps, our
CV-model failed to capture the visual features of such buttons.
Most FPs are indeed associated with UI options that are hardly
noticeable, e.g., a small Add to Cart button in a UI with bad
design. However, we don’t think such a UI is indeed an AUI,
since there is no such a user-preferred option. We believe many
of the FPs and FNs can potentially be eliminated by gathering
a larger set of high-quality ground-truth data, with more clear-
cut AUIs.

TABLE IV: Effectiveness of the YOLOv5 model.

Model AUI Type Precision Recall F1-score

YOLOv5
(on Server)

UPO 0.925 0.867 0.895
AGO 0.837 0.81 0.823
All 0.881 0.838 0.859

YOLOv5
(with texts masked)

UPO 0.871 0.899 0.885
AGO 0.882 0.762 0.818
All 0.877 0.830 0.853

Model migration. To understand whether migrating the
model to mobile devices reduces the effectiveness of YOLOv5,
we perform a comparison analysis by running YOLOv5 on our
server and comparing the results with DARPA (i.e., YOLOv5-
ncnn migration on the smartphone). As shown in Table IV,
the comparison results indicate that compared to the origi-
nal YOLOv5 model, converting it with ncnn as in DARPA
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introduces negligible losses, i.e., the F-score is decreased by
1.7% (from 85.9% to 84.2%) when running the model on the
smartphone.

(a) unmasked AUI (b) masked AUI

Fig. 7: The difference between unmasked and masked AUI.

Model generalization to different languages. In addition,
as mentioned earlier, since DARPA detects AUI based on
the visual appearance, it is generic to apps with different
languages. To this end, we perform an additional experiment to
show this capability in DARPA. More specifically, for all the
training and testing AUIs used in DARPA, we intentionally
masked (i.e., blurred) all the texts presented on AGO/UPO
(as shown in Figure 7), and we re-trained another YOLOv5
model and checked its effectiveness. As shown in Table IV, our
evaluation showed that the performance is nearly the same as
the original DARPA, meaning that the effectiveness of DARPA
indeed comes from the visual appearance of UIs, rather than
on-UI text such as “cancel”, “open” in a specific language.

C. RQ2: Comparison between DARPA and alternative detec-
tion techniques

Comparing YOLOv5 to other CV-models. Besides
YOLOv5, we can leverage many other alternative CV-models
to detect AUIs. To evaluate if YOLOv5 is more suitable for
our use case, we compare it to other state-of-the-art object
detection algorithms – Faster RCNN and Mask RCNN. Specif-
ically, for both algorithms, we use VGG16 and ResNet50
respectively as the backbones for feature extraction, which
essentially leads to four models, i.e., Faster RCNN+VGG16,
Faster RCNN+ResNet50, Mask RCNN+VGG16, and Mask
RCNN+ResNet50. We train the models on the same ground-
truth dataset Daui, and fine-tune their parameters to get
optimal performance. We use the default settings for these
models, as, according to prior studies [28], the default settings
usually generate satisfying results for object detection tasks.
Our comparison results (in Table V) show that YOLOv5
outperforms the other models by a large margin for all the
evaluation metrics. For example, the best RCNN model (Mask
RCNN+ResNet50) achieves an F-score of 80.9%, which is
over 5.0% lower than the YOLOv5 model. In addition to the
above evaluation metrics, we want to highlight that YOLOv5 is
much faster (∼2.5 times) than RCNN models when detecting
objects on UI. This is another critical factor for our choice
as mobile devices usually require very quick UI responses for
user interactions.
End-to-end comparison between DARPA and FraudDroid-
like approach. While DARPA focuses on detecting dark
design patterns (i.e., AUI), it is essentially an instance of
mobile UI analysis techniques [28], [31], [39], [40], [47].
Most of the techniques, apart from the CV-based techniques

TABLE V: Comparison between YOLOv5 and other models.

Model Precision Recall F1-score
Faster RCNN+VGG16 0.732 0.710 0.721
Faster RCNN+ResNet50 0.744 0.698 0.720
Mask RCNN+VGG16 0.802 0.762 0.781
Mask RCNN+ResNet50 0.829 0.789 0.809
YOLOv5 0.881 0.838 0.859

(which we compared earlier), rely on the analysis of the UI-
related strings and placement features. A prominent example
is FraudDroid [31], which uses the resource id of a UI, and
its size and placement features to identify advertising UIs. We
believe the same features can be used to detect AUI as well.
Thus, we compare DARPA with a FraudDroid-like approach.
A key problem is that the FraudDroid module that detects
advertising UIs using the above features, AdViewDetector, is
not readily available for comparison since it is close-sourced.
We aim at a relatively fair comparison by implementing
FraudDroid based on the paper and then extending it to AUI
detection. Specifically, we enrich the UI string features by
adding resource ids corresponding to the AUIs (as summarized
in Section III-A). Then, we reuse the heuristic-based approach
and the placement features of FraudDroid to determine if a UI
contains an AUI.

TABLE VI: Confusion matrix of DARPA and FraudDroid

FraudDroid DARPA
AUI Non-AUI AUI Non-AUI

Labeled
AUI 35 208 213 30

Non-AUI 11 242 21 232

For evaluation, we randomly select 100 apps from Dapp and
run each of them manually for one minute by Monkey [17],
and use the FraudDroid-like approach and DARPA to evaluate
the app screenshots captured by AS and the corresponding
metadata of screenshots captured by ADB tool [4]. Then,
we review the UPOs flagged by the approaches and decide
if they indeed correspond to the UI options of AUIs. We
show the confusion matrices in Table VI. As can be seen,
DARPA identifies over 87.6% (213 out of 243) screenshots
that have UPOs with a pretty high precision (91.0%), while
the FraudDroid-like approach only identifies 14.4% UPOs.
This is mainly due to the infeasibility to find the resource ids
(which the FraudDroid-like approach relies on) as many apps
choose to obfuscate them to defeat reverse engineering or the
resource ids are generated dynamically, and the difficulty to
curate a comprehensive list of resource ids for the wide variety
of AUIs (see Section III-A). The distinctive coverage of AUI
substantiated our point that, by leveraging a CV-model that
captures the visual features of a UI, DARPA is more generic
in detecting various types of AUIs.

D. RQ3: Performance Overhead

We report the performance overhead of DARPA by com-
paring several performance metrics of the smartphone when
running apps with and without DARPA. Specifically, we ran-
domly select 100 apps from Dapp and manually run each app
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TABLE VII: Performance overhead of DARPA.

Avg. CPU
Usage (%)

Avg. Memory
Usage (MB)

Avg. Frame
Rate (fps)

Avg. Power
Consumption (milliWatt)

Baseline (w/o DARPA) 55.22 4291.96 81 443.85
Baseline + UI monitoring 55.91 (↑ 1.25%) 4352.21 (↑ 1.40%) 79 (↓ 2.47%) 451.88 (↑ 1.81%)
Baseline + UI monitoring + AUI detection 57.11 (↑ 2.15%) 4407.56 (↑ 1.27%) 78 (↓ 1.27%) 469.63 (↑ 3.93%)
DARPA (UI monitoring + AUI detection + UI decoration) 57.76 (↑ 1.14%) 4413.85 (↑ 0.14%) 74 (↓ 5.13%) 474.12 (↑ 0.96%)
Total overhead (compared to baseline) 2.54 (↑ 4.6%) 121.84 (↑ 2.8%) 7.00 (↓ 8.6%) 30.27 (↑ 6.8%)

TABLE VIII: Performance of DARPA under different selected time interval.

Selected
interval (ms)

Avg. CPU
Usage (%)

Avg. Memory
Usage (MB)

Avg. Frame
Rate (fps)

Avg. Power
Consumption (milliWatt)

50 86.5 4452.53 59 586.92
100 69.8 4419.69 66 499.55
200 57.8 4413.85 74 474.12
300 54.8 4401.12 69 481.5
400 59.7 4360.52 76 469.96
500 56.1 4354.63 79 464.85

for one minute, and record the events (e.g., clicks) used to
trigger the app. At the same time, we execute SoloPi [14] to
gather the performance metrics, such as memory/CPU usage,
frame rate, and power consumption. After that, we re-run the
apps by replaying the recorded events using Airtest [5], an
open-source app UI automation framework, and start DARPA
to check the apps at run-time. We execute SoloPi a second
time to gather the performance metrics with DARPA running.

Table VII shows the average performance overhead on the
100 Dapp apps. As it can be seen from the last row of the
Table, DARPA causes an increase of 4.6%, 2.8%, and 6.8% in
terms of the usage of CPU, memory, and power consumption,
respectively. DARPA also results in an 8.6% decrease of the
average frame rate. To understand where the performance over-
head comes from, we measured the overhead by incrementally
adding the individual components, i.e., UI monitoring, AUI
detection, and UI decoration, and inspecting the corresponding
overhead changes. As can be seen in Table VII, the main
reason for the overhead is running the AUI detection model
(i.e., YOLO), including processing the captured screenshots
and detecting AGO and UPO from them. For example, the
AUI detection component brings a 3.93% increase of power
consumption, while UI monitoring and decoration components
bring in 1.81% and 0.96% increase, respectively. The overhead
from AUI detection can practically be reduced by using a
smaller network size in YOLO with potential trade-off of
lower accuracy, running the YOLO model on top of GPU (we
used CPU implementation in our prototype due to hardware
limitations), etc.; the other two components rely primarily
on system services to function (i.e., accessibility service and
window manager), and thus reducing their overhead may
require OS optimizations. We believe the overheads are
relatively low or even unnoticeable for end users. For example,
DARPA introduces 121.84MB more memory usage (mainly for
hosting the CV-model and related data), which accounts for
less than 2% memory given that an average smartphone has
at least 6GB RAM [9]. Additionally, instead of monitoring all
running apps as the default setting, a possible way to further

reduce such overhead could be selectively running DARPA on
those less-trusted apps (e.g., apps not from google play).

E. RQ4: Proper Timing for Executing DARPA

As discussed in Section IV-B, analyzing all UI update events
(e.g., making screenshots, and running AUI detection) is not
feasible due to the high frequency of the events. Therefore, we
apply a ct value to determine the subset of UI events that we
need to analyze. We perform a series of experiments to find
the optimal ct that increases the efficiency of DARPA, and, at
the same time, does not lead to a significant impact on the
coverage of AUIs. Specifically, we set ct to six values 50ms,
100ms, 200ms, 300ms, 400ms and 500ms. For each value, we
run DARPA on the Dapp apps, and evaluate the coverage of
AUIs and the performance metrics using the same methods as
in Section VI-C and Section VI-D. As shown in the trendlines
in Figure 8, the number of UI change events drops with the
increase of the ct value, as the number of identified AUIs.
Compared to the smallest ct value (50ms), setting ct to 200ms
still allows DARPA to detect 94.1% (191 out of 203) of the
AUIs. In the meantime, the overall workload, i.e., the total
number of events and UI changes to evaluate, dropped by over
67.1% (1,538 out of 2,291). Therefore, we choose 200ms as
an optimal ct value as DARPA can achieve efficiency and good
coverage on AUI at the same time. This is also confirmed by
the performance metrics in Table VIII. Coincidentally, this ct
value also aligns with the human reaction time to changes [32],
[38], i.e., app users may require a similar amount of time to
react to UI changes as well.

VII. DISCUSSION

Our study focuses on the AUIs that can mislead users into
performing unwanted behaviors, e.g., clicking advertising UIs
or subscribing to unintended services. We aim to mitigate such
risks by identifying and highlighting such AUIs to users at
app run-time. In addition to helping end users, our approach
can contribute to other use cases, such as assisting app stores
or regulatory agencies in detecting apps with misleading UIs.
These use cases are fundamental to ensure the usability of
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Fig. 8: AUI coverage under different interval thresholds

mobile devices. Besides, we want to note that, although we
focus on AUIs that mislead users and many AUIs detected in
this study might not be immediately malicious (see examples
in Figure 2), DARPA can potentially help to identify some
malicious behaviors that take advantage of AUIs, e.g., apps
that trick users into authorizing dangerous app permissions.
System reliability. As a solution designed to identify AUIs,
DARPA faces challenges from attackers who use various
techniques to evade its detection. Some attackers may make
straightforward changes to the appearance of the UIs, such
as altering the color, size, or location of UI elements. As we
demonstrated in Section VI-B, DARPA is capable of detecting
a wide range of AUIs in Daui effectively, we believe that it can
still identify such changes as long as the UI elements remain
visible and usable to users. In the worst case, DARPA may fail
to recognize AGO or UPO options on an AUI, and thus is not
able to highlight the options by UI decoration. In such a case,
app users need to make their own decisions without guidance
from DARPA, exposing them to potential misleading UIs.
Limitations. Admittedly, the current design of DARPA shares
the following limitations. (1) Determined attackers can freely
test the adopted CV-model to develop targeted attacks, such as
adversarial patch attacks commonly used in object detection
models [27], [37], [41], [51]. Currently, DARPA cannot defend
against such targeted attacks, but it can be supplemented with
more resilient models [25]. (2) Further, our current DARPA
implementation is limited to analyzing and identifying AUIs
on the Android platform. We believe similar ideas of CV-based
detection are applicable to other platforms as well, e.g., by
using screen capture [23] and window controls overlay [24]
APIs on web (or browsers), and by directly integrating the
detection into operating systems such as iOS. We leave them
as future work as porting the ideas to these platforms requires
additional implementation and integration efforts.

VIII. RELATED WORK

Dark UI patterns. Prior studies [26], [43], [45], [52] reported
the prevalence of dark UI patterns in a variety of settings.
Mathur et al. [43] studied 11K shopping websites, and revealed
how the websites leverage dark patterns to deceive users into
making more purchases, etc. Zagal et al. [52] presented the
concept of dark game design patterns, and discussed the ques-

tionable behaviors of online game designers. Mejtoft et al. [45]
analyzed a number of home cooking recipe websites for the
purpose of understanding the deceptive design patterns with
regard to the use of cookies. Bosch et al. [26] introduced the
dark strategies/patterns used by malicious parties to destroy the
privacy awareness of users of IT systems. Additionally, Mathur
et al. [44] noticed the need of a consistent conceptual definition
of dark patterns, and designed a set of normative perspectives
for such patterns. Unlike the studies that investigate dark
patterns in specific settings such as shopping and privacy,
our work builds a more generic approach on top of computer
vision to identify the asymmetric dark patterns appearing in
the mobile apps, based on the observation that such patterns
introduce uneven visual perceptions to app users so as to
deceive them into performing unwanted activities.

UI-based analysis. Our study detects dark patterns by
analyzing app UIs, which is similar to other research on UI-
based analysis. A major line of such research is about ad
fraud [31], [39], [40]. For example, FraudDroid [31] identifies
ad views with UI placement and string features and detects ad
fraud by inspecting UI transition graphs and network traffic.
DECAF [39] detects placement fraud, e.g., small or hidden
ads, by checking the UI layouts and states against several
detection rules. Maddroid [40] detects devious ad contents
using a set of tools, e.g., using Google Vision API and OCR to
identify censored images (e.g., gambling and violence images).
While our approach can potentially cover specific types of ad
fraud, e.g., placement fraud with small ads, it is not designed
for detecting fraudulent activities on UI. Instead, we focus on
the analysis of dark UI patterns, which can visually mislead
users into performing unwanted activities (e.g., sign-up to
recurrent payments) but may not lead to UI-based fraud. More
related to our study is the line of research on UI element
detection, e.g., Chen et al. [28] identifies UI elements using
the boundary, shape, texture and layout and other UI features,
and REMAUI [47] detects UI elements (e.g., images, lists)
using CV and OCR techniques. Similar to REMAUI, we adopt
a CV-based approach for identifying specific UI elements
involved in dark patterns. Additionally, we apply our approach
to mobile devices by interpolating it into the apps’ runtime.
This allows us to perform real-time detection of dark UI
patterns, and end-to-end mitigation for such patterns.

IX. CONCLUSION

In this paper, we perform the first in-depth analysis for
the Asymmetric Dark UI pattern in the mobile ecosystem.
To achieve this, we performed a user study to understand use
perceptions and expectations of AUI. Our research showed that
AUI is pervasive in mobile apps and brings negative impacts
on user experience. To combat AUI, we propose DARPA, a
generic, lightweight framework to highlight key elements in
AUI for app usability improvement for Android devices. An
extensive evaluation showed that DARPA is indeed practical,
with neglectable performance overhead to the original system.
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