
Following Devil’s Footprints: Cross-Platform
Analysis of Potentially Harmful Libraries on

Android and iOS

Kai Chen1, Xueqiang Wang2, Yi Chen1, Peng Wang2, Yeonjoon Lee2, XiaoFeng Wang2

Bin Ma1, Aohui Wang1, Yingjun Zhang3, Wei Zou1

{chenkai, chenyi, mabin, wangaohui, zouwei}@iie.ac.cn, {xw48, pw7, yl52, xw7}@indiana.edu, yjzhang@tca.iscas.ac.cn
1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

2Indiana University, Bloomington
3Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences

Abstract—It is reported recently that legitimate libraries are
repackaged for propagating malware. An in-depth analysis of
such potentially-harmful libraries (PhaLibs) , however, has never
been done before, due to the challenges in identifying those
libraries whose code can be unavailable online (e.g., removed
from the public repositories, spreading underground, etc.). Par-
ticularly, for an iOS app, the library it integrates cannot be
trivially recovered from its binary code and cannot be analyzed
by any publicly available anti-virus (AV) systems. In this paper,
we report the first systematic study on PhaLibs across Android
and iOS, based upon a key observation that many iOS libraries
have Android versions that can potentially be used to understand
their behaviors and the relations between the libraries on both
sides. To this end, we utilize a methodology that first clusters
similar packages from a large number of popular Android apps
to identify libraries, and strategically analyze them using AV
systems to find PhaLibs. Those libraries are then used to search
for their iOS counterparts within Apple apps based upon the
invariant features shared cross platforms. On each discovered iOS
PhaLib, our approach further identifies its suspicious behaviors
that also appear on its Android version and uses the AV system
on the Android side to confirm that it is indeed potentially
harmful. Running our methodology on 1.3 million Android apps
and 140,000 popular iOS apps downloaded from 8 markets, we
discovered 117 PhaLibs with 1008 variations on Android and 23
PhaLibs with 706 variations on iOS. Altogether, the Android
PhaLibs is found to infect 6.84% of Google Play apps and
the iOS libraries are embedded within thousands of iOS apps,
2.94% among those from the official Apple App Store. Looking
into the behaviors of the PhaLibs, not only do we discover the
recently reported suspicious iOS libraries such as mobiSage,
but also their Android counterparts and 6 other back-door
libraries never known before. Those libraries are found to contain
risky behaviors such as reading from their host apps’ keychain,
stealthily recording audio and video and even attempting to
make phone calls. Our research shows that most Android-side
harmful behaviors have been preserved on their corresponding
iOS libraries, and further identifies new evidence about libraries
repackaging for harmful code propagations on both sides.

I. INTRODUCTION

The prosperity of mobile ecosystems is powered by highly

dynamic and ever-expanding markets of mobile applications

(app for short), which are playing increasingly important roles

in our daily life, from entertainment, social networking to

serious businesses like finance, health care and home security.

Behind such valuable services, however, there could be less

than legitimate or even sinister activities, which may cause

harm to mobile users. Examples include transferring private

user information such as her precise locations and IMEI to

unauthorized recipients, sending SMS messages unrelated to an

app’s functionalities, exploiting known vulnerabilities, installing

back-doors, etc. The apps exhibiting such behavior is called

potentially harmful app (PHA), a term Google uses to replace

the undefined term “malware” for describing “applications

which pose a security risk to users or their data” [1]. A recent

study shows that such dangerous activities are found in 7% apps

on Google Play [2], most of which are detected by mainstream

anti-virus (AV) scanners integrated within VirusTotal. In our

research, we consider an app to be a PHA when it acts in a way

that can cause potential damage to the user’s information assets

(as described above). A close look at such apps reveals that the

sources of their potentially harmful behavior, oftentimes, are

the libraries shared across the apps [2]. Similar observations

have also been made on iOS, a platform widely thought to be

mostly PHA free: it has been reported recently that iOS apps

are infected with malicious code, which comes from either

unwitting use of untrusted versions of popular libraries [3] or

the methods injected by contaminated XCode toolkits [4].

Challenges in PhaLib analysis. Indeed, given the way that

today’s apps are developed, which are often built by extensively

reusing existing code, it is conceivable that potentially harmful
libraries (PhaLib) could feature prominently in mobile PHA,

constituting an important channel for spreading infections

when popular legitimate libraries are contaminated. However,

a systematic analysis on PhaLibs has never been done before,

possibly due to its technical challenges. Specifically, for a

legitimate library, what can be found online are just its most

recent versions, even when most of its older versions are still in

use within a large number of apps. An example is airpush,

a library we found to have 12 versions distributed across 1,650

popular apps. When it comes to PhaLibs, the situation becomes

even more complicated: contaminated libraries are scattered

across a variety of sources like public code repositories

(e.g., GitHub), online forums, etc. and come and go quickly;

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.29

357

2016 IEEE Symposium on Security and Privacy

© 2016, Kai Chen. Under license to IEEE.

DOI 10.1109/SP.2016.29

357

dedicated malicious libraries are shared among PHA authors

and difficult to come by. The attempt to recover them from

apps is nontrivial, due to the presence of different versions of

a PhaLib and the customizations made by the app developer.

More challenging is the study on iOS PhaLibs: the library

integrated into an iOS app is broken down into methods

scattered across its binary, which is much more difficult to

identify than an Android library that typically stays in a

package; further unlike Android for which there are many AV

systems for detecting potentially harmful code and behavior,

up to our knowledge, no public system exists for finding iOS

PHAs. In the absence of such a system, validating the findings

of a PHA analysis becomes difficult, as there is no ground truth

to confirm that the PhaLibs discovered are indeed harmful.

Cross-platform study. In this paper, we report the first cross-

platform analysis on PhaLibs, over 1.3 million Android apps

and 140,000 iOS apps, an unprecedented scale compared with

all existing research on Android and iOS PHAs. The study is

made possible by a methodology designed to overcome the

aforementioned technical barriers. More specifically, using a

recent technique for scalable comparison of Android meth-

ods [5], our approach is able to find similar methods shared

by different packages across over a million apps. Clustering

the packages within the apps according to their names and

code similarity helps us discover 763 libraries and their 4,912

variations. These libraries are then extracted and scanned by

VirusTotal to find out those suspicious and their potentially

harmful behaviors are further analyzed.

A key idea of our methodology is to leverage the relations

between Android and iOS libraries for a cross-platform PhaLib

analysis. The interesting thing here is that a significant portion

of third-party services to Apple devices are also provided to

Android users through libraries: e.g., among the top 38 iOS

libraries reported by SourceDNA, 36 have Android versions

(see appendix); this enables us to identify and analyze a subset

of iOS libraries by leveraging the features they share with their

Android counterparts. Our study shows that even though related

iOS and Android libraries can be developed independently,

the relations between them can still be established using

the invariants across the platforms, particular, the constant

strings they share such as the URLs for accessing external

resources, and the ways the classes involving those strings are

connected to other classes (e.g., through method invocation,

see Section III-C). Based upon such invariants, we are able to

find an iOS PhaLib cross-platform by inspecting iOS apps

for the invariants recovered from its Android version and

correlated their behavior sequences considered to be potentially

harmful by leading AV scanners: our technique detects common

action sequences within the Android and iOS libraries of the

same service and confirms that they are part of the signatures

the scanners use to catch Android PHAs. This enables us

to validate reported harmful behavior within iOS apps, when

similar activities within Android apps are deemed problematic.

Our findings. Running the methodology over our Android,

iOS app sets, we discovered 117 Android PhaLibs (with 1008

variations), which were further mapped to 46 iOS libraries.

We manually confirmed that all of them are indeed libraries

and 23 of them (706 variations) are potentially harmful. These

PhaLibs are found within 98,308 Android apps, and 2,844 iOS

apps on the official Apple App Store and 3,998 apps on the

third-party Apple stores, including those in North America,

Asia and Europe. Altogether 2.94% of the iOS apps (based

upon our random samples) on the Apple Store are considered to

contain suspicious code, which is surprising given the common

belief that the official iOS market is well guarded and unlikely

to have PHAs. A further study on the discovered PhaLibs

brings to light not only the recently reported iOS PhaLib

mobiSage but also its Android version, together with other

PhaLib back-doors (adwo, leadbolt, admogo, etc.) never known

before. Interesting behaviors discovered include stealthy audio

and video recording and picture taking, keychain access within

the advertising libraries, command and control, making call

attempts, disclosing app list etc., on both Android and iOS.

Further we found that on both platforms, some versions of

popular libraries contain the suspicious action sequences their

official versions do not have, indicating possible repackaging of

such libraries by the adversary to propagate malicious payloads.

Particularly, on the Android side, we found that 8 popular

libraries, including mappn, jpush, swiftp and etc., have all

been repackaged, with the apps using the potentially harmful

versions discovered on third-party app markets. Particularly, the

contaminated version of a popular Chinese app-market library,

mappn was found on GitHub. Also our study shows that within

iOS apps, the potentially harmful actions corresponding to

those observed in their Android counterparts are often executed

through private APIs. Of particular interest here is the strategy

both Android and iOS PhaLibs take to perform the operations

that need the user’s consent, such as collecting precise locations:

they typically avoid calling the APIs that need the approval from

the user, such as requestWhenInUseAuthorization,

and instead, read last retrieved location data from the hosting

app in background; in other words, the PhaLib is designed to

leverage the consent an app already gets from the user (for its

legitimate functionality) to execute potentially harmful actions.

We are communicating with Apple, Google and other app

vendors to report our findings and helping them analyze the

apps involving the PhaLibs we discovered. The video demos

and other materials related to the research are posted on a

private website [6].

Contributions. The contributions of the paper are summarized

as follows:

• Cross-platform study on PhaLibs. We conducted the first

systematic study on potentially harmful libraries, over both

Android and iOS. The study is made possible by a suite

of innovative techniques, including automatic identification

of libraries from Android apps, mapping Android libraries

to the code components within iOS apps and determining

suspicious action sequences cross-platform. These techniques

were evaluated over 1.3 million mainstream Android apps and

over 140,000 iOS apps from the official App Store and various

358358

third-party markets, a scale that has never been achieved in

the related prior research.

• New findings. Our study leads to surprising discoveries

about the pervasiveness of Android and iOS PHAs, the critical

roles played PhaLibs in these apps, new suspicious activities,

contamination of legitimate libraries for spreading potentially

harmful code and the unique strategy taken by iOS PhaLibs to

remain low-profile. Also interesting is the new understanding

about the relations between Android and iOS libraries, which

could lead to new techniques for effective detection of PHAs

on these platforms, particularly suspicious iOS apps, which

have never been systematically investigated before.

II. BACKGROUND

Mobile libraries. A mobile library is a collection of non-

volatile resources (including subroutines, classes and data) that

provides a set of functionalities (taking pictures, setting up an

SSL connection, etc.) the developers can conveniently integrate

into their program. On Android, such a library is typically

included in a package. A library encapsulates the functionalities

it serves with a set of well-defined Application Programming

Interfaces (APIs), through which one can easily acquire the

service. With such convenience, a vast majority of apps today

are built upon different libraries. Examples of popular libraries

include unity3d, crashlytics and inMobi for Android and flurry,

openfeint and bugsnag for iOS. Also libraries are utilized by

advertisers to deliver advertisements (ad) from their servers to

the mobile users and collect the users’ information useful to

targeted advertising.

Although some libraries are maintained by their developers

on their official websites, many others are scattered across a

variety of sources like public code repositories (e.g., GitHub),

online forums, etc. Even for those well maintained, typically

only their most recent versions are available, which those

obsolete ones are most likely still in use within different apps.

As a result, a comprehensive analysis of active mobile libraries,

those still used by popular apps, is nontrivial. In our study, we

recovered such libraries from Android and iOS apps through

clustering their components using a similar code comparison

technique (Section III-B).

Once a potentially harmful or contaminated library is

published through online repositories or forums, it can reach

a large number of app developers, who by using the PhaLib,

unwittingly include harmful code in their programs. The

most prominent event related to this threat is the recent

XCodeGhost attack, in which XCode, the Apple’s programming

environment, was repackaged with potentially harmful code

and uploaded to online repositories, and all the apps built

with the contaminated XCode, including some leading apps

like WeChat, were all found to contain potentially harmful

libraries [4]. Note that the propagation of potentially harmful

code in the attack does not go through shared libraries directly:

instead the infection is passed on to apps by the compromised

programming environment. In our research, however, new

evidence is provided that the library repackaging attack is

indeed present on both Android and iOS.

Mobile PHA detection. Just like traditional desktop systems,

Android is also known to be plagued by PHAs. It is reported

that potentially harmful apps exist on the Android official

market [7] and are rather pervasive on third-party markets [2].

Also prior research shows that such PHAs are mainly introduced

through repackaging legitimate apps (e.g., AngryBird), which

enables the PHA to free-ride the legitimate app’s popularity

to reach a large audience. What has been less clear are other

avenues the PHA authors can exploit to spread potentially

harmful code, particulary repackaging shared libraries, which

was studied in our research. Different from Android, iOS is

less susceptible to PHA infection, thanks to its more restrictive

security control and app vetting process. However, the recent

XCodeGhost attack shows that contaminated shared resources

could be a realistic threat to iOS security.

Major Anti-Virus (AV) companies are moving towards the

mobile market, providing new services to detect mobile PHAs.

Particularly, the public AV platform VirusTotal has integrated

54 AV scanners, including the products of all leading AV

companies such as Symantec, McAFee, Kaspersky, etc., which

all work on Android apps. Those scanners typically inspect

the disassembled code of an app, looking for the signatures of

known harmful behavior. Also app markets can deploy their

own PHA detection mechanisms, such as Google’s Bouncer [8].

However, similar AV services do not exist on iOS. Apple is

known to be less supportive to third-party AV products [9], [10].

Technically, PHA detection on the Apple platform is hard due

to the encryption protection on apps: an app downloaded from

the Apple Store is encrypted with keys and analyzing its code

needs to first decrypt the app, which cannot be done without the

right key. The problem is that such a key cannot be accessed

by the user without jail-breaking her device. Therefore, in the

absence of the help from Apple, it becomes very difficult for

an ordinary user to decrypt the app she installs for an AV

scan. In our study, we manually checked more than ten popular

online AV services and found that none of them provides a

comprehensive PHA detection service for iOS. For example,

VirusTotal, the most famous AV platform, only reports the

metadata of an iOS app such as configuration information [11].

The only PHA we found it is capable of detecting is “Find and

Call”, which is known to the public in 2012 [12]. Neither can

other services such as VirSCAN [13] capture harmful iOS code.

Such a lack of public AV services is also caused by the belief

that iOS PHAs are rare: there were just 4 iOS targeted attacks

in 2014, compared to 1268 known families of Android PHA

this year [14]. Our research, however, reveals that actually a

large number of apps on the Apple markets are involved in

the activities considered to be potentially harmful when they

are performed by Android apps (Section IV).

Code-similarity comparison. To recover the libraries already

integrated into an app’s code, we have to compare code

components (in terms of methods) across a large number of

apps (over a million for Android). Such comparison needs

to be scalable, accurate and also capable of tolerating some

differences between the components, which widely exist due to

359359

LibFinder

Group
packages

Cluster
groups

Android
Apps

Detecting
PhaLibs

DEX.
constructor

Lib
combiner

Android
libs

Cross-platform
mapping

Map
classes

Find lib
members

anchors

Suspicious behavior
correlation

Behavior
Finder

IAC
pairs

Mapped
libsiOS

Apps

Android
PhaLibs

VirusTotal
.DEX
Pha?

.DEX
Pha?

Remove
IAC

iOS
PhaLibs

Fig. 1: Overview of our approach.

the variations of the same library (different official, customized

versions). To this end, we utilized a recently proposed technique

called Centroid [5] in our research, which extracts a set of

features (e.g., loops, branches, etc.) from an app’s control-flow

graph (CFG), uses such features to convert the program into a

high-dimension object (with each feature as a dimension) and

then maps the whole program into the geometric center (the

centroid) of the object. The centroid, which is a concrete value,

is characterized by a monotonicity property: for two program

components with similar centroids, their CFGs also come close;

for those unrelated to each other, their centroids are also very

different. This approach localizes the global comparison across

the whole market to a small number of “neighbors”, which

allows high scalability and accuracy to be achieved at the same

time [5]. More specifically, a code component can be easily

compared with millions of other components through a similar

binary search over their centroids.

Adversary model. We consider the adversary who spreads po-

tentially harmful code through repackaging legitimate Android

or iOS libraries, or through distributing dedicated PhaLibs for

PHA authors to build attack payloads. As a first step, we only

studied the libraries that have not been obfuscated within the

app code. Also for the cross-platform analysis, we have to

focus on the PhaLibs with both Android and iOS versions. It

is important to note that we did not make any assumption on

what the PHA authors cannot do. Instead, our study is meant

to improve our understanding of the scope and magnitude of

this type of PHA infections and techniques the adversary uses,

by investigating a subset of Android and iOS PhaLibs.

III. METHODOLOGY

A. Overview

Idea and key techniques. As mentioned earlier, a study on

mobile PhaLibs needs to discover hidden libraries integrated

within apps and determine whether they are indeed suspicious,

which is nontrivial on Android and even more so on iOS, due to

the lack of the ground truth (AV detecting systems for validating

whether a library is indeed suspicious). Our solutions are a

suite of techniques enabling a unique analysis procedure that

correlates Android PhaLibs to their iOS counterparts, using

the resources on the Android side to study the suspicious

behavior of iOS apps. This procedure is illustrated in Figure 1

and the key techniques involved are highlighted as follows:

on Android (Section III-B) (1) hidden library discovery, (2)

PhaLib detection, and on iOS (Section III-C) (3) cross-platform

mapping of PhaLibs and (4) suspicious behavior correlation.

Specifically, the first step on the Android side is to cluster

the packages recovered from the code of over a million apps

(including 400,000 from Google Play) to identify “libraries”,

that is, those extensively reused across apps. The libraries are

then extracted and scanned by VirusTotal to detect PhaLibs

from them or their variations. After that, the invariants (e.g.,

constant URL strings) collected from individual PhaLib are

utilized to analyze over 140,000 iOS apps, for the purpose of

finding related iOS PhaLibs from the apps. Finally, suspicious

behavior (in terms of invariant-API-category sequences) in the

iOS PhaLibs is identified by correlating each iOS invariant-

API-category sequence to the one within the related Android

PhaLib, so that it can be confirmed by existing AV systems to

be potentially harmful. All these steps are automated. However,

we do need manual effort to build a dictionary for the mappings

between Android and iOS APIs (Section III-C). Note that this

only needs to be done once when the OS for iOS or Android

is updated.

Example. Figure 2 presents an example that describes how

our methodology works. As we can see from Figure 2-A, the

packages found within 13 Android apps share over 65% of

methods and are therefore considered to be the variations of a

library. They are extracted from the hosting apps and scanned

by VirusTotal to detect PhaLibs. A confirmed Android PhaLib

is illustrated in Figure 2-B, whose URL sequence is considered

stable across platforms (see the figure). Such a stable invariant

can also be found from a related iOS Phalib (Figure 2-C),

even though it is built upon a different programming language.

Further from those PhaLibs, we can identify their corresponding

invariant-API-category sequences. The Android-side sequence

turns out to be part of the signatures some AV scanners use

to detect PHAs, which indicates that the related behavior on

the iOS side is also suspicious. In the measurement study we

performed using the methodology, the correlations between the

PhaLibs on different platforms and their shared behavior were

all automatically detected and then manually validated, which

confirmed that almost all of them were accurate.

B. Finding PhaLibs on Android

Our analysis on mobile PhaLibs starts from the Android end,

since Android apps are easier to study (unencrypted, relatively

small size and availability of the ground truth, i.e., VirusTotal)

than the programs on iOS. What we did first is to identify

the libraries from the code of over a million apps and run

VirusTotal to detect those considered to be potentially harmful.

This approach could miss the PhaLibs whose behavior has not

360360

iOS PhaLib

“http://apiconfig.adwo.com/adwo/i”
ASIdentifierManager:advertisingIdentifier -- READ DEVICE INFO

Android PhaLib

“http://apiconfig.adwo.com/adwo/a2”
TelephoneManager.getDeviceId() -- READ DEVICE INFO

package 2

package 1

package 3 .. 13ge 2 pa

packa

VirusTotal

PhaLib
PhaLib

PhaLib

Fig. A

Fig. B

Fig. C

65%

Fig. 2: An example showing how our methodology works.

been known (and therefore cannot be found by VirusTotal),

but simply attributing known harmful behavior to libraries

and analyzing their relations already helps us gain a better

understanding about a few important issues never studied before,

for example, what is the role a PhaLib plays in potentially

harmful activities, how the libraries are exploited as an avenue

to propagate harmful code, etc. Following we elaborate our

approach (see Figure 1).

Grouping packages. As introduced earlier, an Android library

is in the form of a Java package, which implements a set

of functionalities and provides services to its hosting app

(Section II). It can be built by any developer, who only needs

to pack her code and make it available for sharing. There are

tens of popular libraries available online [15], which however

are only a tip of the iceberg. Many libraries in the wild are

only circulated within a small group of people. Examples

include those used within an organization and the attack

toolkits available to the hacker community. Even for the popular

libraries, they tend to have multiple versions introduced by

updates and the needs for serving different devices (phone,

tablet, etc.) and different markets (North America, Europe,

Asia, etc.). As a result, finding these libraries online is highly

difficult, and in some cases, even impossible (e.g., an older

version that has been replaced with the new one).

Given the challenges in collecting libraries online and

tracking their version changes, we have to look at the apps,

the ultimate source of libraries, and recover them from the

app code. The advantage of doing this is that whatever we

found must be the libraries that are still “alive”, being used

by some apps. The security threats discovered from those

apps will have real-world impacts. Specifically, we leverage an

observation: a library is typically used as a whole piece and also

named and structured in the standard way [16]; also in most

cases, different instances of the same library carry the same

package name prefix, at least the top domain and organization’s

domain (e.g., com.android), when they are integrated within

different apps. What we can do here is to automatically analyze

the disassembled code of Android apps, breaking them into

packages and grouping these packages according to their names

as appear within their hosting apps. All the packages in the

same group are further inspected to find out whether they share

a lot of code among them. Those indeed are and also used by

the apps from more than 20 different vendors (determined by

looking at the certificates used to sign apps, as prior research

does [2]) are reported as libraries. This approach helps us

avoid the pair-wise code comparison across a large number

of apps, which is very computation-intensive. Also note that

though grouping packages by their names could miss some

potentially harmful libraries that have been obfuscated, this

treatment is simple and effective at identifying many PhaLib

instances, particulary for the legitimate libraries contaminated

with attack code, since they are integrated by legitimate app

developers who have no intention to hide their package names.

In our research, we performed this analysis over 1.3 million

Android apps collected from the app markets around the world,

including over 400,000 popular apps from the Google Play store

(see Section IV-A for details). We implemented a tool, called

LibFinder, to automatically analyze the disassembled apps,

which discovered 612,437 packages and further organized the

packages into 763 groups according to their names. Particularly

our approach utilizes the Root Zone Database [17] to identify

multi-level domain names for accurately grouping the packages.

Within each group, our approach further clustered all the

packages to identify libraries and their variations (different

versions or those customized by the third party).

Finding Android libraries. The purpose of clustering is to

find out all the related packages, those sharing a large portion

of code with others in the same cluster. To this end, we first

define a distance, called package similarity degree (PSD) based

upon Jaccard index, to measure the similarity between two

packages: for two packages p1, p2 from different vendors,

PSD(p1, p2) = n(p1 ∩ p2)/n(p1 ∪ p2), where n(p1 ∩ p2)
is the number of common methods shared between p1 and p2
and n(p1∪p2) is the number of unique methods in either p1 or

p2. To compare two packages at the method level, LibFinder

utilizes the centroid-based approach [5], which computes the

geometric center (centroid) of a model derived from a method’s

CFG (see Section II) to represent the method: two methods are

considered to match each other if their centroids come very

close (within the boundary set according to the prior work [5]).

The PSD between two packages describes their similarity.

The higher it becomes, the more likely that these packages

are variations of the same library. To determine the threshold

for classifying the packages into a library, we utilized two

training datasets in our research: the first one contains 20

randomly-selected libraries (e.g., youmi and unity3d) that

are unrelated to each other and the second one involves 20

libraries together with their different versions (e.g., updates,

patched libraries, etc). Figure 3 shows the distribution of the

PSDs between unrelated libraries and that of those related. As

we can see from the figure, the unrelated libraries never share

more than 13% of their methods, while for those related, they

have at least 57% of the methods in common and most of pairs

have PSDs above 85%. Given the huge gap between those

related and those not, we set the threshold to 35%, right in

the middle between 13% and 57%, which easily differentiates

these two types of library pairs (see Figure 3).

Using the threshold (35%), LibFinder first clusters the

packages within the same group (based upon the shared package

name prefix) with algorithm DBSCAN [18], and then checks

361361

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a

ti
o

PSD

unrelated libraries

libraries with different versions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 3: Distribution of PSDs between unrelated libraries and that of
those related.

whether the clusters in different groups can be merged (when

the members in two clusters share over 35% methods). In our

research, we successfully compared over 1.3 million Android

apps in this way and discovered 763 clusters, each considered

to be a library. Figure 4 shows the distribution over the number

of variations for each library discovered in this way.

Detecting PhaLibs. To determine whether a library and its

variations are PhaLibs, we scanned them with VirusTotal

(Figure 1). A package is flagged as suspicious if at least

two scanners report it. A technical challenge here is that we

cannot trivially extract the libraries and directly scan them with

VirusTotal, which only works on apps, not the library packages.

Our solution is to scan the special host app of a library, which

carries nothing but the library. For this purpose, we first pick

up an app integrating the library, locate the package within the

app’s DEX bytecode and remove all other code to build the

new host app. More specifically, our approach automatically

discovers the program location of the package from the header

of the DEX file, including its code and data, before emptying the

whole app and converting it to a placeholder for the package. In

this way, whatever is discovered by VirusTotal can be attributed

to the library.

To scan such an app, VirusTotal has to work in its scan

model, running all 54 AV systems on the app. This is much

more heavyweight than the caching mode, in which only the

checksum of the app is compared against those already scanned.

In the scan mode, on average 5 minutes need to be taken to

analyze an app. To efficiently handle over 763 libraries and

their 4,912 variations discovered in our study (which could take

long time to scan if the libraries are processed sequentially), we

come up with a technique to analyze multiple libraries together.

Specifically, our approach first combines different packages

within the same cluster together on a single placeholder app,

as many as possible, under the constraint of the file-size limit

put by VirusTotal. If the app is reported to be legitimate, we

can drop all the libraries involved. Otherwise, we upload and

scan each variation one by one. Using this approach, we went

through all 763 libraries and their variations found from the

1.3 million apps within only 1,725 scans, total one day with 6

VirusTotal accounts.

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23 25 27 30 32 35 40 45 56

N
u

m
b

e
r

o
f

cl
u

st
e

rs

Number of variations

Fig. 4: Distribution over the number of variations for each library
discovered.

C. Analyzing iOS Libs Cross-Platform

Finding iOS PhaLibs is challenging, since recovering li-

braries from the binary code of iOS apps is hard and no

AV systems are publicly available for the Apple platform to

validate our discoveries. To address this issue, we utilize a

key observation that many iOS libraries actually have Android

counterparts. More specifically, in our research, we looked into

the top 38 iOS libraries as reported by SourceDNA, an analytics

service that profiles the Android and iOS app stores. It turns out

that 36 of them, nearly 95%, have Android versions (Table VI in

Appendix presents the details of these popular libraries). Since

Android is less protected than iOS, there is no reason to believe

that once a legitimate library’s iOS version is contaminated

(e.g., adwo), its Android version will remain intact. Therefore,

we decided to map a confirmed Android PhaLib (by VirusTotal)

to its iOS counterpart (if exists) and utilize the Android-side

ground truth to help validate the potentially harmful code

discovered on the iOS side. This approach will certainly miss

some iOS PhaLibs. Nevertheless, it serves as a first step towards

systematic study of iOS PHAs and provides a baseline for a

better understanding of the security risks posed by iOS libraries.

Such a cross-platform mapping, however, is by no means

trivial. Android and iOS are two dramatically different systems

with totally different frameworks and APIs, and the program

languages for developing apps (Java vs. Objective-C). Given

the huge gap between the two platforms, it does not come

with a surprise that oftentimes, the Android and iOS versions

of the same library are actually designed and implemented

independently by different developers. As a result, the program

structures and logic can be very different across the platforms,

even for the same library. For example, a function on one

platform can be implemented into multiple ones on the other;

APIs on different platforms are hard to align, and even

when this can be done, the input arguments of the APIs

can also be significantly different (Figure 5). Although prior

research studies the relations between the variations of the

same program (e.g., one obfuscated while the other is not) [19]

or those on different platforms but compiled from the same

source code [20], never before has any effort been made to

correlate two independently developed programs with the same

functionalities across platforms.

With the difficulty in correlating Android and iOS libraries,

we believe that there must be some invariant relations between

362362

__AWAdShow_webView_shouldStartLoadWit
hRequest_navigationType__{

…
objc_msgSend(v10->jsConnector,

"parseCommand:webview:", v31, v11);
… }

__AWJSConnector_parseCommand_webview_
_{

…
void* play_audio_ptr = [[dict

objectForKey:@”adwoPlayAudio”]
unsignedLongValue]

play_audio_ptr(…); … }

iOS

Android

boolean shouldOverrideUrlLoading(…){
if (“adwoPlayAudio”.equalsIgnoreCase(str2)){

//start media player thread
new aq(str17).start();

}
…}

Fig. 5: Different ways to use audio in Android and iOS platforms.
The name of the class (i.e., aq) is obfuscated in Android part. In iOS
part, the method is in the form of function pointer and stored in a
dictionary.

them. After all, they are just different versions of the same

library, providing identical or very similar services to the users.

For example, no matter how different an ad library’s Android

and iOS versions look like, they have to communicate with

the same server or at least the hosts in the same domains

(http://apiconfig.adwo.com for adwo), and they need to promote

the similar products. In our study, we developed a technique

that establishes such a correlation through the invariants shared

across the variations of the same library. More specifically, our

approach performs a static invariant discovery, using a training

set to select from a known list of invariants [21] suitable

for bridging the gap between the platforms. Such invariants

were later automatically extracted from the Android PhaLibs

(packages included in the clusters) as well as over 140,000

iOS apps (decrypted using Clutch [22] and dissembled using

capstone [23]) and used to identify the libraries embedded

within the iOS apps. Further we compared the suspicious

behaviors between the Android and iOS libraries of the same

origin to determine whether the activities deemed potentially

harmful on the Android side are also there within the iOS

counterpart. This is important because Apple is more rigorous in

security control than Android. It is possible that some Android-

side operations are no longer allowed on iOS (e.g., sending

SMS in background). For this purpose, we utilized VirusTotal

to indirectly validate the potentially harmful behaviors in iOS

apps, even though the AV system cannot directly work on the

Apple platform. Following we elaborate our techniques.

Cross-platform invariants. Invariants provide valuable infor-

mation about a program’s operations and data structures, which

is a good source for software testing [24], understanding [25]

and etc. A typical invariant inference approach usually in-

struments the source code of a targeted program, runs it on

different inputs for several times, and records the values of

each variables inside the program for inferring invariable values

at specific program points such as procedure entries and exits.

These existing techniques aim at discovering invariants

within the same program or between its variations built by the

same group of developers. What we are looking for, however,

is the connections between libraries on different platforms,

which are developed independently, involving different vari-

able/function names, control/data flows and even different API

and system calls specific to the platforms (a property used in

the prior research as an invariant [21]). Also challenging here

is the scalability of the cross-platform analysis: as mentioned

earlier, we need to map 763 libraries and their 4,912 variations

(discovered from 1.3 million Android apps) to the binary code

of 140,000 iOS apps. Therefore, we cannot afford to execute

these programs to identify their runtime invariable data, and

have to resort to a static invariant analysis.

To find out such cross-platform invariants, we looked into

a collection of program points typically used in invariant

discovery, as elaborated in the prior study [21], including

program entry, program exit and loop header. At different

program points, the invariants are different, which affects

the outcomes of the mapping. More specifically, procedure

entries and exits are widely used as the program points (e.g.,

by Daikon [21]) where invariants are collected. However,

when cross-examining procedures (i.e., methods) over different

platforms, we found that rarely they could be mapped to their

counterparts. Also unreliable is the code fragment within a

method, which cannot be used to link independently developed

libraries, as discovered in our study. Further complicating our

mission is the difficulty in even identifying libraries within

the binary code of an iOS app: unlike an Android library,

which is integrated into an app as a separate Java package, an

iOS library is typically broken down into methods and mixed

together with other libraries and program components. We

found in our research that the only reliable program unit for the

invariant discovery cross platforms is class. A class is related to

a certain object within the program, such as a button, and often

designed to handle certain events. At this level, we observe

some cross-platform links: e.g., the same button/webview
shows up on both Android and iOS libraries and a similar

click/load web page event needs to be handled by the

corresponding objects on these platforms. Also, a Java class is

easy to find from Android bytecode; on the iOS front, all the

methods under a class are named by the class name followed

by their individual method names, which allows us to easily

group them together.

Based upon this observation, we further studied the cross-

platform invariant discovery over a training set with 20

manually paired Android and iOS libraries. These libraries

were collected from their official websites. Within each pair,

we manually labeled their corresponding classes (those with

the same functionalities) whenever possible. Altogether, 126

pairs of classes were identified and labeled. Over those library

pairs, we inspected the program points according to the list

of candidate invariants [21], using a dictionary (manually

constructed) to translate the instructions and APIs cross

platforms. More specifically, our approach ran SmartDroid [26]

to construct the control-flow graph (CFG) for the methods under

each Android class and built the CFG for the iOS methods

based on capstone [23]. Then, we looked at the corresponding

program points (class construction, class destruction, view

appear, view disappear, or methods with sensitive events) within

the classes across the platforms to find out those whose values

can be determined statically, and are also consistent across the

corresponding classes and different between unrelated classes.

What has been found was further manually inspected to ensure

363363

that indeed the program features are present within the classes

on the both platforms and also reliable. This study shows

that constant strings (or substrings) turn out to be the most

reliable feature shared by the related libraries on both platforms.

Such strings include URLs, JSON Keys, program logs, etc.,

which are expected to be utilized by the libraries no matter

how it is implemented. Table I elaborates the strings and how

they are used. For example, within the AxAdObject class

of the library admixer, strings like “Load Timeout” and

“FailedToReceiveAd” appear on both the Android and

iOS side, which are the text the apps use to communicate

with the user, and strings like “&ad_network=” can also be

mapped, which are used to compare the input data from the

remote servers to find out its type (e.g., different commands).

How strings are used? Cross-platform example strings that we found

Keys for JSON or Dictionary “AppSEC”, “mediaURL”, “guid key”

Resources “offerwall-flow.html”, “webview bar back.png”

Developers’ information “partners2@adsmogo.com”

Scheme “adwo://”, “wgtroot://”, “mraid://”, “redir://”

Cyphertext text/code
“DUBu6wJ27y6xs7VWmNDw67DD”

“02e310a99f1640b53e88e9e408295a94”

Program logs
“Load Timeout”, “FailedToReceiveAd : %@”

“[AdPack] interstitial displayed”

Certain Format
“</HitTable>”, “</DocumentElement>”

“yyyy-MM-dd’T’HH:mm:ssZZZ”

URL related
“&width=%d”, “&ad network=”

“http://track.adwo.com:18088/track/i”
“http://www.admarket.mobi/ftad/apiadreq”

Command and JS code
“adc bridge.fireAppPresenceEvent(%́@,́ false);”

“window.mogoview.fireChangeEvent(%@);”

TABLE I: Cross-platform strings and how they are used.

Figure 6 illustrates the results of using common strings as

invariants to pair libraries over a test set with 126 pairs of

classes and 20 pairs of libraries. As we can see, when the

number of matched constant strings (at least 5 letters long

and at different program points) within a pair of classes goes

above 8, the false detection rate (FDR, the ratio of incorrectly

mapped classes among all those paired across the platforms)

becomes only 1%. Although the coverage is 40% in this step,

we perform an extension on these pairs and find much more

classes in the next step. Further, when the number of matched

class pairs (through the constant strings) exceeds 3, an Android

library is almost certain to be mapped to its iOS counterpart.

Therefore, these two thresholds (8 for pairing classes and 3 for

pairing libraries) were used in our research to discover Android-

related PhaLibs from iOS apps. Running this technique on

140,000 iOS apps, we successfully mapped 46 Android PhaLibs

to the iOS libraries integrated within 17680 apps. All these

matched libraries were manually validated, by inspecting their

corresponding functionalities, and we found that the relations

between the identified libraries (pairs of Android packages and

iOS apps) were all correct (Section IV-A).

Finding library members. As discussed above, across the

platforms, we can correlate an Android library to its counterpart

integrated within an iOS app. Particularly, the classes within

the app that have been mapped to their Android counterparts

based upon shared strings are all considered to be within the

same library. However, these libraries, which we call anchors,

are the only members of the library we can find. Other library

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77 82 87 92

ra
ti

o

Number of strings

false detection rate

coverage
False detection rate: 0.01

Fig. 6: False detection rate and coverage when using different number
of strings to map classes.

members also need to be discovered from the iOS app for

analyzing the library’s behaviors. This is nontrivial, due to the

way iOS libraries are integrated within the app: all the methods

are mixed together, and even though we can still group them

using their names into classes, there is no straightforward way

to link different classes together to find a library. Our solution

is to statically analyze the code within the anchors to identify

their relations with other classes (e.g., an anchor’s method is

invoked by another class) and use such relations to find other

members within the same library. Note that a direct invocation

from a class B to the anchor A does not necessarily mean that

they are inside the same library: for example, B could be a

function within the app that makes a call to the library where

A stays.

Specifically, in our research, we developed a technique that

automatically explores the anchors’ relations with other classes

to discover other members inside a library. Our approach is

based upon three kinds of inter-class relations: Call, Inherit and

Refer. When a method in Class A calls a method in Class B,

their relation is denoted by A →Call B. When A is inherited

from B, the relation is A →Inherit B. When an object of B
is used inside A, we describe the relation as A →Ref B. Note

that the relations here are directional: e.g., A →Call B does

not imply B →Call A.

Our approach uses the following rules to discover new library

members:

• For any class A inside a library, we consider another class

B also inside the same class if B is not a framework class,

which is determined using a manually constructed list with

972 system classes (on Apple SDK 8.3), and also A →Call B
or A →Inherit B or A →Ref B. In most cases, if a method

calls, inherits or refers to the object within another non-system

class, the latter should also be part of the library.

• For any anchor class A inside a library, we consider a

non-framework class B part of the library if B →Call A or

B →Inherit A or B →Ref A, and there exists another Android

class B′ that has the same relation with A’s counterpart A′,
and B and B′ share at least k common strings. In this case,

B is also labeled as an anchor.

Here k is set below 8, the threshold for selecting an anchor

without considering its relations with other classes. This is

because B’s relation with A, an anchor, is an additional feature

that can help classify B, and therefore its affiliation can be

364364

E
ref

A

B
call

C

ref

G

callD
inherit

F
call

a library

anchor

other class

Fig. 7: An example showing how to extend classes using anchors in
a mapped library.

determined without solely relying on the common strings.

Indeed, in our research, we analyzed 222 such classes and

found that when k ≥ 3, B can always be classified into A’s

library, without any false positive.

Given a set of anchors identified from an iOS app solely

based upon common strings, the above two rules are then

applied iteratively to other classes within the app until no

new class can be added into the library. Figure 7 presents an

example for this cross-platform library identification. In the

figure, the class A is an anchor and all other classes (B, C,

D in the figure) that it calls, inherits or refers should be put

into the library (due to the first rule). Further, G is classified

into the library because of its relation with D. Also, though

E →ref A and F →call A, we only set F as an anchor and a

member of the library since it shares at least 3 common strings

with its Android counterpart while E does not.

In our research, we utilized a test set with 20 mapped

library pairs to evaluate the effectiveness of the above rules for

discovering iOS classes within a library. For each library pair,

the two rules were applied to extend the iOS library that initially

only contains anchors. Then by comparing each newly added

class with the official iOS library downloaded from the web, we

manually checked whether the class should be included in the

library. If not, a false positive is recorded. Once the iOS libraries

was fully extended, we manually checked all the classes our

approach identified. The FDR was 0.5%. A limitation of this

technique is that it cannot cover the independent classes with

no relation with other classes. To measure how many classes

were missed, we checked the official libraries and found that

the false negative rate is 28.84%.

Potentially harmful behavior. Successful mapping of an

Android PhaLib to an iOS library does not necessarily mean that

the latter is potentially harmful. Due to Apple’s strict security

control, including its app vetting and security protection at

the OS level, some potentially harmful behaviors within the

Android library could be dropped from its iOS counterpart.

Further, it is possible that an Android PhaLib is a repackaged

legitimate library, while its corresponding iOS library recovered

from apps has not been contaminated. As mentioned earlier,

confirming potentially-harmful activities within an iOS app is

hard, due to the lack of ground truth (no public AV system

working on iOS apps). In our research, we came up with a

novel technique that leverages VirusTotal to determine the

presence of suspicious behavior within an iOS app. More

specifically, our approach is designed to find a corresponding

behavior between the Android and iOS versions of a library,

and further determine whether such a behavior is considered

to be potentially harmful by VirusTotal: if so, then we get the

evidence that indeed the iOS library behaves in a way that

VirusTotal would consider to be potentially harmful when the

same behavior is observed from an Android app.

To this end, we first need to model a library’s behaviors

across the platforms. Conventionally, a program’s behavior is

described by its API sequences, which has been extensively

used in PHA detection [27]. However, a direct application of

the model to serve our purpose faces a significant challenge.

To see where the problem is, let us look at Figure 8, which

presents an API sequence within an Android library for adwo,

and another sequence in an iOS app that does the same

thing. The trouble here, as we can see from the figure, is that

not only a dictionary is needed to map the APIs from one

platform to the other, but some semantic knowledge should be

there to help understand that the operations performed by one

API on one platform (e.g., CTTelephonyNetworkInfo:
subscriberCellularProvider in the figure) may need

to be handled by multiple APIs on the other platform (e.g.,

ConnectivityManager.getActiveNetworkInfo()
and NetworkInfo.getTypeName() for ACCESS_
NETWORK_INFO). Precise mapping of such a relation (one to

many APIs for a specific set of operations) is hard and cannot

be easily done using a dictionary.

An observation from the figure is that once we

generalize the sequences, replacing each API with

its category (e.g, CTTelephonyNetworkInfo:
subscriberCellularProvider is replaced by

ACCESS_NETWORK_INFO) and further removing the

consecutive occurrences of the same category (e.g., dropping

the subsequence of repeated ACCESS_NETWORK_INFO
and keeping only one), the two sequences on the

Android and iOS fronts look very much alike, given

the translations between their API categories: e.g., the

Android API TelephonyManager.getDeviceId()
is mapped to READ_DEVICE_INFO and also

ASIdentifierManager:advertisingIdentifier.

In the figure, we show the part of the dictionary for

such API category translations. It is conceivable that this

generalization makes the dictionary construction easier and

the comparison across different API sequences feasible. In

the meantime, the treatment is also found to be sufficient

specific for modeling an app’s behavior. Our research shows

that comparing two sequences at this API category level is

accurate, introducing 3.3% FDR according to our manual

validation. Intuitively, replacing an API with its category

avoids the trouble introduced by multiple APIs with similar

functionalities. Further, we found that oftentimes, before an

API is invoked, several other APIs first need to be called to

prepare the parameters for such an invocation: for example, to

call methods in NSURLConnection, methods in Reachability
first need to be triggered to check whether network service is

available on iOS. These APIs (for preparing for the call) are

often within the same category and therefore replacing them

365365

…
"http://apiconfig.adwo.com/adwo/i”
…
"&brand=%@“
"&userid=%@“

Android adwo iOS adwo
…
"http://apiconfig.adwo.com/adwo/a"
…
"&brand=“
"&userid=“

ConnectivityManager.getActiveNetworkInfo()
NetworkInfo.getTypeName()

TelephonyManager.getDeviceId()
TelephonyManager.getSimSerialNumber()
TelephonyManager.getLine1Number()

URL.openConnection()
HttpURLConnection.setDoOutput()
HttpURLConnection.setConnectTimeout()
HttpURLConnection.setReadTimeout()
HttpURLConnection.setRequestMethod()
HttpURLConnection.getOutputStream()
HttpURLConnection.connect()
HttpURLConnection.getInputStream()

…

…

CTTelephonyNetworkInfo:subscriberCellularProvider

NSURLConnection:initWithRequest:delegate:startImmediately:
NSURLConnection:scheduleInRunLoop:forMode:

…

invariants

ASIdentifierManager:advertisingIdentifier

…

Fig. 8: The APIs used by the same behavior are quite diverse in two platforms. If category is used instead of a concrete API, the two
behavior sequences can be mapped.

with a single category hides the diversity of such a preparation

step across different platforms.

Specifically, in our research, we define a behavior as a

sequence of API categories discovered from a program’s CFG,

together with the occurrences of the invariants (i.e., the constant

strings) used for mapping libraries cross platforms. In Figure 8,

the behaviors within the Android and iOS libraries are described

as such sequences (illustrated in the figure). To compare the

behaviors between 46 matched PhaLib pairs, we first created a

dictionary that maps 21 Android framework classes and 39 iOS

framework classes (i.e., schemes), including over 500 APIs on

each side, to 19 categories1. To map an Android class to a cat-

egory, we leveraged the permissions used by APIs in the class.

Specifically, such permissions were automatically discovered

using PScout [28] and then manually inspected before placing

the class requiring them into a specific category. For example,

a class asking for android.permission.SEND_SMS and

android.permission.READ_SMS are put in the category

“SMS”. On the iOS side, since there is no such API-permission

mapping, we had to manually find out each API’s semantics

to determine its affiliation with a specific category. Note that

Android developers may use Intents instead of framework

APIs to perform some operations: for example, they may run

“content://com.android.contacts” to read contacts. Therefore,

we also included 14 similar Intents in the dictionary. On top of

the dictionary, we further implemented an automatic analysis

tool called BehaviorFinder, which starts from the methods

not called by any other methods inside a library (e.g., entry

point, event handlers) and conducts a standard static inter-

procedural analysis [29] to generate the invariant-API-category

(IAC) sequences within both Android packages and iOS apps.

For this purpose, we ran SmartDroid [26] to build the cross-

procedure CFG for the Android package and construct the

CFG over the classes identified within an iOS app based

on capstone [23]. Along the CFGs, invariants and APIs are

automatically discovered and translated using the dictionary,

until IAC sequences are fully constructed.

Given the behaviors (the IAC sequences) from an Android

PhaLib and its iOS counterpart, BehaviorFinder further carries

1We plan to release the dictionary at www.appomicsec.com.

out a pair-wise comparison between the sequences from the two

platforms. Whenever the two sequences are found to share a

common subsequence at least 80% of either sequence in length,

we consider that these two sequences are matched and the

behaviors they represent are shared across the two libraries over

different platforms. To understand the accuracy of this approach,

we randomly selected 90 mapped IAC pairs in our research and

manually inspected the corresponding code on both platforms

to find out whether they really describe the same behaviors.

This validation process shows that the FDR introduced by

our approach is only 3.3%. Running BehaviorFinder on the

PhaLab pairs discovered, we successfully extracted 9,259 IAC

sequences from 46 iOS libraries and 16,762 from 46 Android

libraries, and identified 2,891 common behaviors.

The last step of the analysis is to find out whether a common

behavior is indeed potentially harmful. To this end, we ran

a script to remove the behavior’s IAC from all the packages

within the same cluster and then submitted the placeholder app

of this cluster (i.e., the fake app that integrates the packages

within the cluster; see Section III-B) to VirusTotal. When the

scan report comes back, our approach inspects the number of

scanners (in VirusTotal) flag the placeholder app as potentially

harmful: if some scanners before removing the IAC, marks

the placeholder as potentially harmful but stops doing so after

the IAC sequence is gone, we have reason to believe that the

sequence is considered to be part of the signatures used by

those scanners2. This indicates that indeed the sequence is part

of potentially-harmful activities. In our research, our approach

recovered 838 such confirmed harmful behaviors out of the

2,891 common behaviors across Android and iOS PhaLibs.

IV. FINDINGS AND MEASUREMENT

In this section, we report the discoveries made by running our

cross-platform methodology over 1.3 million Android apps and

140,000 iOS apps. Our research brought to light a large number

of PhaLibs, both on Android and on iOS, and their significant

impacts. Also highlighted in our study is the observation that

repackaging third-party libraries likely already becomes an

2Note that the placeholder is a fake app and all the packages it includes
have been modified when extracted from their host apps, and therefore, the
scanners flagging the app are certainly not using checksums.

366366

Market # PhaLibs # of total apps studied # Infected apps

Google Play 77 400000 27353 (6.84%)

Asia Market 113 800000 67108 (8.39%)

Other Markets 25 100000 3847 (3.85%)

TABLE II: PhaLibs in Android markets

important avenue for propagating mobile PHAs. Further we

revealed the correlations between Android and iOS PhaLibs.

A. Settings

Apps. We collected 1.3 millions Android apps from over 30

markets (Google Play and other markets in America, Europe

and Asia), and 96,579 iOS apps from the official Apple Store

and 45,966 apps from third-party markets (2 American, 3 Asian

and 2 European markets, as illustrated in Table II & III). One

of these third-party markets install Apple apps to un-jailbroken

devices and others serving jailbroken devices. From the third-

party stores, we randomly selected apps to download, while

from the official stores (i.e., Google Play and Apple Store),

we first picked up the most popular apps in each category (top

500 for Google Play and top 100 for Apple Store) and then

randomly chose the targets from the rest. Also, we removed

duplicated apps according to their MD5.

Computing environment. Three powerful servers were used

to analyze all the apps. One has 20 cores at 2.4GHz CPU,

128GB memory and 56TB hard drivers. The other two servers

each have 12 cores at 2.1Hz CPU, 64GB memory and 20TB

hard drivers. The operating systems are Red Hat Linux.

Validation. All the findings made by our methodology were

thoroughly validated to ensure their accuracy. Specifically,

100 randomly sampled clusters from the total 763 clusters

(for Android library discovery) were analyzed manually: from

each sampled cluster, 10 packages were randomly picked out

to determine whether they include similar methods, provide

similar services and should be considered as the variations of

the same library. Further, from all the libraries mapped across

the platforms, we randomly selected 50 pairs (an Android

package and an iOS app found to contain related methods)

and again manually analyzed their code to determine whether

indeed they are different versions of the same library (for

the iOS app, the library it integrates). Finally, we randomly

sampled 90 pairs of IAC sequences matched between Android

and iOS PhaLibs to find out whether they are related to the

same activities (e.g., read contacts and send them out) and

whether there is any reason to believe that the behavior is

potentially harmful.

This validation process shows that both the library clustering

and cross-platform library mapping are highly accurate: we

did not find any false positive. On the other hand, the behavior

paired across the platforms did cause some mismatches,

introducing a FDR below 3.3%. In other words, the vast

majority of the matching we found are correct.

B. Landscape

PhaLibs on Android. From the 1.3 millions Android apps in

our dataset, we found 763 libraries with totally 4,912 variations

(different official versions, third-party customizations, etc.).

Running VirusTotal [30] on these libraries (Section III-B), we

discovered that 1008 variations of 117 libraries are potentially

harmful (flagged by at least two scanners in VirusTotal).

Figure 9 illustrates the distribution of PhaLibs over the number

of scanners. As we can see from the figure, 386 variations of

32 libraries were alarmed by at least 10 out of the 54 scanners.

77 of the 117 libraries were downloaded from Google Play.

By comparison, third-party markets are more susceptible to

PhaLibs, in general, about 7.88% of their apps infected with

these libraries.

To understand the impacts of the PhaLibs discovered, for

each library, we added together the total installs of each Google-

Play app that integrates it. Figure 10 illustrates the distribution

of the numbers of PhaLibs over the sum of the installs from

all the apps using them. The figure shows that some PhaLibs

(e.g., jirbo) have been installed over 279 million times, and

altogether, each PhaLib has 11 million installs on average.

This indicates that the impacts of such libraries are indeed

significant.

PhaLibs on iOS. We found that among all 1008 variations of

117 PhaLibs, 46 PhaLibs were mapped to their counterparts

integrated within iOS apps. Among them, 23 PhaLibs (706

variations) were shown to have potentially harmful behaviors

related to their Android versions. Compared with Android, the

total number of PhaLibs on iOS is relatively low, which is

understandable due to the fact that our study focuses on the iOS

libraries with Android versions. Still, such iOS PhaLibs have

a significant impact, affecting over 6,842 iOS apps, and also

2,844 of them show up on the Apple App Store. Even with its

rigorous vetting protection, the apps integrating those libraries

still fall through the cracks. As an example, an ad library adwo
we found has infected at least 61 apps on the Apple Store,

performing harmful activities such as taking pictures, recording

audio and uploading the recordings and the user’s contacts and

precise locations to a remote server. Also we found that some

versions of a library contain potentially harmful behaviors while

others do not (details are illustrated in appendix: Table VIII

for Android and Table VII for iOS). On iOS, this raises the

concern that potentially a new version of a library may not

receive a full security inspection if its old version (without

harmful behaviors) passed the vetting process before.

We also found 19 PhaLibs in third-party app stores, both

Android and iOS. Table III elaborates our findings. Particularly,

16 PhaLibs infecting 2,985 apps were discovered on the

91 market [31], a Chinese Apple app market that enables

the iPhone users to install its apps without jailbreaking

their devices (possibly through enterprise certificates or other

techniques [32]). The harmful behaviors of these libraries

include collecting accurate location data, voice recording, etc.

Also, our study reveals 18 PhaLibs in jailbreak app stores,

which perform such activities as uploading installed application

list, install application with private APIs, and taking photos.

Just as expected, more PhaLibs are on the third-party stores

than the official Apple Store.

367367

0

10

20

30

40

50

60

70

80

90

100

110

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Su
m

 o
f

lib
ra

ri
e

s

Numbers of warning scanners

6

4 4

16

27

18

2

0

5

10

15

20

25

30

1k 10k 100k 1,000k 10,000k 100,000k 200,000k

N
u

m
b

e
r

o
s

P
h

aL
ib

s

Sum of installs on Google Play

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 5 10 50 100 500 1,000 5,000 10,000

Su
m

 o
f

ap
p

s

Number of installs

0.5k 1k 5k 10k 50k 100k 500k 1,000k 5,000k 10,000k

Fig. 9: Distribution of PhaLibs over the
number of scanners.

Fig. 10: Distribution of PhaLibs over the
sum of installs from all the apps using them.

Fig. 11: Distribution of apps over their total
installs.

Among all 23 iOS PhaLibs, 15 of them are ad libraries while

the other 8 are toolkits, such as umpay, lotuseed and mobclick.

Some of them are available on the public repositories, such as

GitHub and Google Code. Using their names and some invariant

strings within the libraries, we searched Google and found 6 of

them are publicly available, while the other 17 PhaLibs are not

online. Among these PhaLibs could be those distributed in the

underground community. Also, some of these libraries have

both their official versions and third-party customized versions.

Later we show that this could be indicative of the presence of

library repackaging attacks (Section IV and Section IV-D).

Infected apps. As mentioned earlier, our study shows that

27,353 apps (6.84%) in Google Play and 70,955 apps (7.88%)

in third-party markets are infected through libraries. Table II

shows the detailed findings. As we can see from the table, the

Asia markets are more likely to host infected apps. On the

other hand, still many PHAs are on the Google Play store.

Of particular interest here is that compared with what are

reported by the prior research, which discovers that 7% of the

apps on the Play store are PHAs, apparently, PhaLibs could

be behind most of these suspicious apps. This indicates that

libraries could be an important (and also largely overlooked)

channel for disseminating potentially harmful code. Further we

analyzed the popularity of these PHAs. Figure 11 shows the

distribution of those apps over their total installs. About 4,123

have been installed over 50,000 times each. Among them are

popular apps such Unblock Me Free and Clash of Clans, which

have been installed for over 50 million times each.

On the iOS side, we were surprised to find that 2.94% of

the apps from the official Apple Store are infected through the

PhaLibs (706 variations). It is widely believed that very few

PHAs exist on Apple’s official market. As far as we know, the

number of disclosed PHAs is very few till now [12]. However,

by mapping Android PhaLibs to iOS apps, we were able to

identify 2,844 apps (out of 96,579) to be PHAs. Some of them

are quite popular, for example, the popular game called “2048”.

We have reported those PhaLibs and apps to the Apple security

team. Also, we note that 50.45% of these PHAs were actually

uploaded this and last year, which indicates that suspicious

apps are more likely to be among the new apps on the Apple

Store (Figure 13 shows the distribution of such PHAs over the

time they stay on the Apple Store). One possible explanation

is that PHA authors are increasingly moving their attentions

to the Apple platform. In the meantime, we found that 1,346

apps have been on the store for quite a long time (24 months).

On the third-party Apple stores, our research shows that

8.7% of the apps there are PHAs (about 3 times of those on

the official Apple Store), which is comparable with the Android

markets [2]. Altogether, 3,998 out of 45,966 apps there are

infected through PhaLibs. Table III presents the findings across

the official and third-party markets.

Market Area Type # of PhaLibs # of apps studied # infected apps

Apple Store Global Official 23 96,579 2,844 (2.94%)

91 China 3rd party** 16 34,338 2,985 (8.69%)

51 ipa China Jailbreak 10 2,594 159 (6.13%)

Baidu* China Jailbreak 16 5,393 306 (5.67%)

Vshare US Jailbreak 10 2,163 389 (17.98%)

PandaApp US Jailbreak 7 1,292 148 (11.46%)

iDownloads Russia Jailbreak 3 186 11 (5.91)%

TABLE III: PhaLibs in iOS markets
(*Apps are from Baidu cloud disk, uploaded by multiple users. **3rd party apps for

non-jailbreaking iPhones.)

Behavior. We analyzed all 117 Android PhaLibs to understand

their potentially harmful behaviors, focusing primarily on the

activities matching those within their iOS counterparts (through

the IAC sequences as described in Section III-C). Besides

common activities such as tracking users’ fine location and

sending out private data (e.g., IMEI, app list, phone number,

etc.), our study leads to the discovery of a set of highly

suspicious activities never reported by prior research. For

example, some ad libraries (e.g, adwo) were found to contain

back-doors that execute the commands received from a remote

server, taking photos/videos/audios and sending them out to

any IP address given by the server. Further under the server’s

control, the libraries can read or even add items to the user’

contact list. Such operations may allow the adversary to modify

an existing contact using her information (e.g., replacing a

friend’s email or website with those under the adversary’s

control), which opens the door to an impersonation attack.

Also interestingly, the ad library adwo even operates on the

user’s photo gallery, with the capability to add, delete and edit

photos there. This is very unusual for an ad library, as it is

less clear how the capability can legitimately serve advertising

purpose. On the other hand, we note that some known memory

flaws can be exploited through pictures [33], which can be

executed using such a capability. Other identified suspicious

behaviors include reading from the user’s reminder, calendar

and passbook, and changing her todo list, etc., which could

have serious consequences (e.g., changing the dosages of the

medication on one’s todo list). Again, it is certainly surprised

to see that such behaviors are performed within an ad library

like adwo. Another dangerous operation is to open any URL

scheme given by a remote party, which may cause the device

368368

to download any app indicated by the adversary or running

any app on the device. Finally we found that some PhaLibs

(mostly ad libraries) even prompt the user to send an SMS

message or email or make a phone call. All these behaviors

were successfully triggered in our research through a (manual)

dynamic analysis, indicating that the threats they pose are

indeed real. Table IV summarizes our findings.
On the iOS front, which is supposed to be securer due to

Apple’s rigorous security control, we were surprised to find that

most of the aforementioned harmful behaviors are preserved

within the corresponding iOS PhaLibs, as illustrated in Table IV.

From the table, we can see that compared with the Android-side

behaviors, the only one missing on the list is reading the contact

list, whose Android-side IAC sequences were never matched

to any behavior on the iOS side. This capability turns out to be

well guarded on iOS, requiring the com.apple.security.personal-

information.addressbook entitlement rarely granted to the app

without proper justification. An example of such a PhaLib

is adwo, a library integrated within 111 Android apps and

61 iOS apps. Interestingly, though the behavior (reading the

contacts) failed to show up on the library’s iOS version, we

found that the function interface for this operation is still left

there within the library but the body of the function is empty.

Further we observed that some Android-side functionalities

have been changed to suit iOS, though the relations cross the

platforms are still clearly there: for example, the check on

whether a device has been rooted has been replaced with a

jailbreak check, which could lead to installing apps through

private APIs. We also note that some dangerous activities that

can be performed stealthily on an Android device (e.g., sending

SMS message) have to be done in a more explicit way on

iOS: i.e., asking for the user’s consent. This indicates that the

adversary indeed has to adapt to the more restrictive security

control on iOS. On the other hand, our research also reveals

some iOS-specific suspicious behaviors (showing up on the IAC

sequence within iOS apps): a PhaLib wanpu was found to call

_SecItemCopyMatching for accessing and operating on

its hosting app’s keychain, which could lead to the disclosure

of the user’s password and other private information associated

with the app (Figure 16 in appendix).

Behavior iOS Android

take a picture and send it out Y Y

record/play voice Y Y

send text messages Y Y

send emails Y Y

make a phone call Y Y

read/write/detele bookmarks Y Y

download apps and install Y Y

steal contact list N Y

steal user accounts, location, phone number Y Y

steal cpu, mem info, ip address, device ID, arch Y Y

inject javascript code Y Y

jailbreak related Y N

access keychain Y N

TABLE IV: Comparing Android and iOS PhaLib behaviors
Simultaneously and independently, FireEye recently blogs

the discovery of mobiSage, an iOS SDK embedded with

a back-door that infects thousands of iOS apps [34]. This

SDK has also been discovered in our study, together with its

Lib name System # Infected apps # Downloads Reported? Behaviors

mobiSage
Android 123 835,000 N

CA,RE, LO, KE
iOS 32 N/A Y

adwo
Android 111 2,500,000 N CA, RE, LO, CO, SMS

iOS 61 N/A N EM, PH, DE, JA, JS

Leadbolt
Android 1189 399,150 N

DE, LO, JS
iOS 275 N/A N

admogo
Android 102 N/A N

SMS, LO, DE, JA
iOS 134 N/A N

wanpu
Android 368 N/A N

JA, DE, IN, LI, KE
iOS 13 N/A N

prime31
Android 7042 3,162,160 N

SMS, LO, DE, PH
iOS 7 N/A N

jirbo
Android 3295 192,075,251 N

LO, DE, PH
iOS 186 N/A N

TABLE V: Example of backdoors on Android and iOS markets
CA: Camera; RE: Record; LO: Location; KE: Keychain (only iOS); CO: Contact; EM:
Email; PH: Phone; DE: Device Info; JA: JailBroken (only iOS); JS: Inject Javascript

code; IN: Install apps; LI: List apps
(# downloads is not available in Apple Store or in third-party Android markets.)

Android version, which has never been reported before. Most

importantly, the SDK is just one of the back-door PhaLibs

we found. Others are presented in Table V. These PhaLibs all

exhibit similar behaviors as adwo across their Android and

iOS versions. Their impacts are described in the table. More

details are given in Appendix (Figure 14 and 17).

C. Android PhaLibs

Spread through repackaging. By analyzing different varia-

tions of Android PhaLibs, we found that some of them are

actually benign, not including any potentially-harmful activities

discovered in the other variations of the same library. Most

intriguing is that among all 117 PhaLibs recovered from apps,

58 do not have their harmful variations found on Google

Play. Actually these variations were all collected from third-

party markets. Table II present examples for those libraries

and the markets where their potentially harmful variations

were discovered. To find out where their potentially harmful

code come from, we utilized Dex2jar [35] to disassemble

these libraries’ bytecode into Java source code and compare

them to extract the difference that contains potentially harmful

code. Typical behaviors of the code snippet is sending devices’

information (e.g., deviceID and simSerialNumber), dis-

covered from the PhaLib mappn, an analytics library integrated

in the apps such as CrazyMachines GoldenGears Lite (at least

500,000 installs). Searching the snippet on Google reveals that

the potentially harmful code actually exists on Github. This

indicates that highly likely mappn, a popular library for a

famous Chinese app market, has been repackaged to spread

potentially harmful code. We also note that it is very common

that a library (sometimes very famous like Facebook) will

refer another one to utilize its functionalities. Once the referred

library is infected (usually less noticeable by developers), it is

very dangerous for developers to include them in their apps

(examples are in appendix).

Prior research shows that repackaging popular apps is the

main channel for propagating Android PHAs [36], since the

PHA authors can free-ride the popularity of the legitimate apps

to reach out to a large number of Android users. A limitation

of this approach is that the repackaged app usually cannot be

uploaded to the market hosting the original version of the app,

369369

particularly for the reputable place like Google Play, since this

will cause the potentially harmful app to be easily exposed. By

comparison, library repackaging does not have this problem.

Very likely multiple apps in the same markets are all integrated

with the same PhaLib. Also, such libraries could even be used

by highly popular apps, such as Unblock Me Free and Clash
of Clans, as discovered in our research, which unwittingly

get infected when incorporating the contaminated versions of

legitimate libraries.

Library embedding. We also found that some libraries

contains other libraries (embedded libraries) to utilize their

functionalities. In this case, once an embedded library is

infected, its host library also becomes contaminated: e.g.,

Adview contains 42 libraries like adwo. Other examples

include famous ad libraries like admob and adsmogo, each

impacting millions of users around the world.
Our research demonstrates that library embedding is likely

to be another channel for spreading potentially harmful code.

Unlike direct attachment of the code to a library, placing it

within a legitimate library integrated into another library is

much stealthier. Such indirect contamination could propagate

the harmful code even to highly reputable libraries: it is con-

ceivable that the developers of such a library would not directly

utilize the code from untrusted sources; however, as long as

any libraries down its embedding chain are contaminated by a

PhaLib, the library gets infected.

D. iOS PhaLibs
Repackaging. Our research shows that repackaged libraries

are also extensively present on the Apple platform. Specifically,

we found that 2 iOS libraries have both benign and potentially

harmful variations. To better understand the code, we disassem-

bled the library binaries and compared the code of different

variations. We found that lots of potentially harmful behaviors

disappear from the version of the library integrated within the

apps on the official Apple Store. One possibility is that Apple’s

restrictive vetting process that forces some libraries, such as

those for advertising, to become less aggressive. More probably,

however, we could imagine that the adversary might infect

some legitimate libraries and spread them across the Internet,

which are picked up by less prominent developers to build the

apps for regional customers (e.g., China). This is likely due to

the great firewall of China that has significant impacts on the

speed of the Internet for downloading the libraries from the

websites outside the country. Interestingly, Chinese developers

tend to obtain the toolkits from the domestic repositories, which

just gives the adversary an opportunity to upload contaminated

versions there. Indeed, on the third-party markets (particularly

in the Chinese markets like 91 Market and 51ipa Market), the

same libraries tend to contain more suspicious behaviors. An

example is appflood, which has been embedded in 61 apps

(e.g., WildPuzzles, 123Karaoke and DotMatch) on the Apple

App Store and 53 apps like Bulu Monster-1.3.0 on the third-

party markets. Comparing the variations of the libraries across

the apps on these two markets, it is interesting to see that even

though they are clearly the variations of the same library (same

names, 95% of identical methods and the same functionalities),

the version of lotuseed on the 91 Market includes additional

code accessing location, while the version used on the Apple

Store does not have such behaviors.

Evasion strategy. We found that some PhaLibs apparently

are designed to be less noticeable, trying to avoid explicitly

asking for permissions from the user. As an example, within

library lotuseed, we found that it has a unique strategy to

perform the operations that need the user’s consent (e.g.,

collecting fine user locations): the PhaLib does not call the API

requestWhenInUseAuthorization, which will cause

a window to pop up to seek the user’s approval, and instead,

just read the last retrieved location data from the host app in

background, as if the permission had already been granted. In

this case, if the app does not have the permission, then nothing

will happen and otherwise, the location data will be obtained

by the library. Either way, the user will not be notified of the

behavior. In other words, the PhaLib leverages the consent an

app already gets from the user (for its legitimate functionality)

to execute potentially harmful actions. The similar strategy was

also found in other PhaLibs.

Interestingly, we found that such behaviors exist on both iOS

and Android side. For example, the iOS version of lotuseed

has the aforementioned behavior and its Android version

also checks the presence of permission android.permission.

ACCESS FINE LOCATION before accessing a user’s location.

Only when the permission is granted, does lotuseed request for

the user’s accurate location and send it out to a remote server.

Also the app checks android.permission.RECORD AUDIO

before recording audio (Figure 18).

V. RELATED WORK

Mobile malware detection and prevention. A lot of effort

has been made to analyze and detect Android PHAs, most

of which aims at detecting the code [37], [38], [39], [40],

[41], [42], [43], [44], [45] for performing potentially harmful

behaviors (e.g., stealing the user’s sensitive information), and

protecting the Android system from various attacks [46], [47],

[48], [49], [50], [51], [52], [53]. Unlike these prior studies,

which mainly work at the app level, our research focuses on

discovering and analyzing mobile libraries and their harmful

behaviors, which has never been done before.

Compared with the research on Android, little has been done

on the iOS front. Among few examples is PiOS [54], the first

static tool to detect privacy leaks in iOS apps. When it comes to

dynamic analysis, prior research [55] highlights the challenges

in analyzing iOS programs. To address the issues, DiOS [56]

uses UI automation to drive execution of iOS application, trying

to trigger more events. Further, by combining dynamic binary

instrumentation (through porting Valgrind [57] to iOS) and

static analysis, iRiS [58] analyzes the API calls within iOS

apps to find the abuse of private APIs. Other examples include

MoCFI [59] that extracts the CFG of a program using PiOS

and checks whether the instructions that change an execution

flow are valid at runtime, and PSiOS[60] that enforces privacy

370370

protection on top of MoCFI. None of the existing research

seriously investigates potentially harmful apps on the Apple

platform, largely due to the lack of ground truth.

Invariants inference. Invariants are widely used in finding

a program’s vulnerabilities [21], [24], [61], [25], which are

typically discovered through dynamically analyzing the pro-

gram [21]. More specifically, the program’s runtime information

is first collected to derive the invariable features before

dynamically analyzing the program; any violation of the

invariants detected in the analysis could indicate a program

error. All the prior studies on this subject are performed on the

same platforms, and most of the time on the same program

or its variations. Never before has any attempt been made to

identify cross-platform invariants for PHA analysis, which has

been done in our research. Particularly, our invariant analysis

is fully static, since this is the only way to make the analysis

scalable, up to the job of processing 140,000 iOS apps.

Cross-platform analysis. Cross-platform security studies are

known to be challenging. Still some work has been done in this

area, mostly for vulnerability analysis. A prominent example

is the recent work that finds similar bugs cross architectures

(X86, MIPS, ARM) within the same program that can be

compiled into different executables for those architectures [62].

By comparison, we are looking for potentially harmful code

within the programs independently developed by different

parties. Linking them together is clearly much more difficult.

Also related to our work is the effort to establish a baseline for

security comparison between Android and iOS apps, in which

manually selected app pairs are analyzed to find out how they

access security-sensitive APIs [63]. In our study, we have to

develop technique to automatically correlate Android and iOS

code and discover the harmful behavior both programs involve.

VI. DISCUSSION

Understanding PhaLibs. All the iOS PhaLibs in our study

were found from the invariants shared with their Android

counterparts. The invariants used in our study, constant strings,

were shown to be highly reliable, introducing almost no false

positives. On the other hand, this approach does have false

negatives, missing the iOS classes that do not share any

strings with their Android versions. Even though this limitation

has been somewhat made up by our extension technique,

which starting from a few anchors, recovers 71.16% of the

classes within a library, certainly some classes or even libraries

fall through the cracks. A more comprehensive study could

rely on the combination of the constant strings and other

invariant features across the platforms, e.g., code structure and

intermediate variables.

More fundamentally, the methodology of mapping Android

PhaLibs to iOS apps misses the libraries built solely for

the iOS platform. As an example, among the top 38 iOS

libraries given by SourceDNA, 36 do have Android versions.

We used this methodology for the purpose of understanding the

relations between Android and iOS libraries and also leveraging

VirusTotal to identify potentially harmful behaviors within iOS

apps. The consequence, however, is that almost certain we

underestimate the scope and magnitude of the PHA threat

on the Apple platform. For example, our estimate of 2.94%

of PHAs on the Apple App Store is very much on the low

end. The real percentage could come much closer to that of

Google Play. Further research on the iOS PhaLibs may require

development of new techniques for a large-scale code similarity

search over the iOS apps and comprehensive definitions of

potentially harmful behaviors within these apps.

Identifying potentially-harmful behavior. Both the PhaLibs

on the Android and iOS sides are identified, directly or

indirectly, by VirusTotal. To determine the potential harmful

behavior within an iOS library, we have to translate it into that

inside an Android PhaLib and utilize a black-box technique

to find out whether the behavior is part of a PHA signature.

Such a translation and analysis, based upon IAC sequences,

are less accurate, introducing 3.3% false positives and certainly

missing the harmful activities that do not have the Android

counterpart. Future research will explore a more effective way

to export Android-side suspicious behaviors to the iOS platform,

supporting direct PHA scanning on iOS apps. Also importantly,

the techniques not relying on behavior and content signatures,

as proposed in the prior research [64], should be developed for

detecting the PHAs with previously unknown harmful behavior.

Evading. It is important to note that the techniques we used

for PhaLib analysis across platform are not meant for PHA

detection. As mentioned earlier, our approach only focuses on

a subset of PHAs, those detected by VirusTotal on Android

and those including the PhaLib with an Android counterpart on

iOS. Even for such apps, the possibility is always there for the

PHA authors to obfuscate their invariants to deter our cross-

platform analysis. Future study is certainly needed to find a

more reliable mapping, making such evasion harder. That being

said, our study reveals the pervasiveness of PhaLibs and their

cross-platform deployment, helping the research community

better understand how such harmful code is propagated, a

critical step towards ultimately defeating the threat they pose.

VII. CONCLUSION

This paper reports the first systematic study on mobile

PhaLibs across Android and iOS platforms. Our research is

made possible by a unique methodology that leverages the

relations between the Android and iOS versions of the same

libraries, which helps get around the technical challenges in

recovering library code from iOS binary code and determining

whether it is indeed potentially harmful. Running the method-

ology on 1.3 million Android apps and 140,000 iOS apps,

we discovered 6.84% of PHAs on Google Play and 2.94% of

PHAs on the Apple App Store. Looking into their behaviors,

we discovered the high-impact back-door PhaLibs on both sides

and their relations. Also we found further evidence that library

contamination could be an important channel for propagating

potentially harmful code. This study made the first step toward

understanding mobile PhaLibs across the platforms and PHA

detection on iOS.

371371

ACKNOWLEDGEMENT

We thank our shepherd Franziska Roesner and anonymous re-

viewers for their valuable comments. We also thank VirusTotal

for the help in validating suspicious apps in our study. Kai Chen

was supported in part by NSFC U1536106, 61100226, Youth

Innovation Promotion Association CAS, and strategic priority

research program of CAS (XDA06010701). The IU authors

are supported in part by the NSF CNS-1223477, 1223495

and 1527141. Yingjun Zhang was supported by National High

Technology Research and Development Program of China (863

Program) (No. 2015AA016006) and NSFC 61303248.

REFERENCES

[1] Google, “Google report: Android security 2014 year in review,”
https://static.googleusercontent.com/media/source.android.com/en/secu-
rity/reports/Google Android Security 2014 Report Final.pdf, 2014.

[2] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale,” in USENIX Security, vol. 15, 2015.

[3] SourceDNA, “ios apps caught using private apis,”
https://sourcedna.com/blog/20151018/ios-apps-using-private-apis.html,
2015.

[4] C. Xiao, “Novel malware xcodeghost modifies
xcode, infects apple ios apps and hits app store,”
http://researchcenter.paloaltonetworks.com/2015/09/novel-malware-
xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/,
Tech. Rep., 2015.

[5] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
ICSE, 2014.

[6] “A private website,” https://sites.google.com/site/phalibscom/, 2015.
[7] F-Secure, “Q1 2014 mobile threat report - f-secure,” https://www.f-

secure.com/documents/996508/1030743/Mobile Threat Report Q1
2014.pdf, Mar 2014.

[8] M. Kassner, “Google play: Android’s bouncer can be pwned,”
http://www.techrepublic.com/blog/it-security/-google-play-androids-
bouncer-can-be-pwned/, 2012.

[9] J. Erwin, “Where did virusbarrier ios go?” http://www.intego.com/mac-
security-blog/where-did-virusbarrier-ios-go/, 2015.

[10] J. Leyden, “Apple is picking off ios an-
tivirus apps one by one: Who’ll be spared?”
http://www.theregister.co.uk/2015/03/24/ios anti malware confusion/,
2015.

[11] VirusTotal, “A closer look at mac os x executables and ios
apps,” http://blog.virustotal.com/2014/12/a-closer-look-at-mac-os-
x-executables.html, 2014.

[12] T. iphone wiki, “Malware for ios,” https://www.theiphonewiki.com/wiki/
Malware for iOS, 2015.

[13] VirSCAN, “Virscan.org is a free on-line scan service,”
http://www.virscan.org/, 2015.

[14] S. Fadilpai, “Android is the biggest target for mobile mal-
ware,” http://betanews.com/2015/06/26/android-is-the-biggest-target-for-
mobile-malware/, 2015.

[15] AppBrain, “Android ad network stats,”
http://www.appbrain.com/stats/libraries/ad?sort=apps, 2015.

[16] “Admob for android, get started,”
https://developers.google.com/admob/android/quick-
start#load the ad in the mainactivity class, November 2015.

[17] iana, “Root zone database,” https://www.iana.org/domains/root/db, 2015.
[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm

for discovering clusters in large spatial databases with noise.” in Kdd,
vol. 96, no. 34, 1996, pp. 226–231.

[19] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
Proceedings of the Second ACM Conference on Data and Application
Security and Privacy, ser. CODASPY ’12. New York, NY, USA:
ACM, 2012, pp. 317–326. [Online]. Available: http://doi.acm.org/10.
1145/2133601.2133640

[20] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz,
“Cross-architecture bug search in binary executables,” in 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, 2015, pp. 709–724. [Online]. Available:
http://dx.doi.org/10.1109/SP.2015.49

[21] M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
Software Engineering, IEEE Transactions on, vol. 27, no. 2, pp. 99–123,
Feb 2001.

[22] “Clutch,” https://github.com/KJCracks/Clutch.

[23] Capstone, “Capstone is a lightweight multi-platform, multi-architecture
disassembly framework,” http://www.capstone-engine.org/.

[24] S. Hangal and M. S. Lam, “Tracking down software bugs
using automatic anomaly detection,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02.
New York, NY, USA: ACM, 2002, pp. 291–301. [Online]. Available:
http://doi.acm.org/10.1145/581339.581377

[25] Y. Kataoka, D. Notkin, M. D. Ernst, and W. G. Griswold, “Automated
support for program refactoring using invariants,” in Proceedings of the
IEEE International Conference on Software Maintenance (ICSM’01), ser.
ICSM ’01. Washington, DC, USA: IEEE Computer Society, 2001, pp.
736–. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2001.972794

[26] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: An automatic system for revealing ui-based trigger
conditions in android applications,” in Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices,
ser. SPSM ’12. New York, NY, USA: ACM, 2012, pp. 93–104.
[Online]. Available: http://doi.acm.org/10.1145/2381934.2381950

[27] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant, “Semantics-
aware malware detection,” in Security and Privacy, 2005 IEEE Symposium
on, May 2005, pp. 32–46.

[28] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 217–228.

[29] E. M. Myers, “A precise inter-procedural data flow algorithm,” in
Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM, 1981, pp. 219–230.

[30] VirusTotal, “Virustotal - free online virus, malware and url scanner,”
https://www.virustotal.com/, 2014.

[31] 91, “91 market,” http://zs.91.com/, 2015.

[32] Apple, “Distributing apple developer enterprise program apps,”
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/
AppDistributionGuide/DistributingEnterpriseProgramApps/Dis-
tributingEnterpriseProgramApps.html, 2015.

[33] Lookout, “What you need to know about the new android vulnerability,
stagefright,” https://blog.lookout.com/blog/2015/07/28/stagefright/, 2015.

[34] P. G. Y. K. Zhaofeng Chen, Adrian Mettler, “ibackdoor: High-
risk code hits ios apps,” https://www.fireeye.com/blog/threat-
research/2015/11/ibackdoor high-risk.html, 2015.

[35] Dex2jar, “Tools to work with android .dex and java .class files,”
https://github.com/pxb1988/dex2jar, 2015.

[36] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in IEEE S&P, 2012.

[37] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth, “Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones.” in OSDI, vol. 10, 2010, pp. 1–6.

[38] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis.” in
USENIX security symposium, 2012, pp. 569–584.

[39] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets.” in NDSS, 2012.

[40] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and Mobile Networks.
ACM, 2012, pp. 101–112.

[41] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applications,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1354–1365.

[42] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android
malware classification using weighted contextual api dependency graphs,”

372372

in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1105–1116.

[43] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android
apps,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2014, pp. 1329–1341.

[44] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Automatic
reconstruction of android malware behaviors,” in Proc. of the Symposium
on Network and Distributed System Security (NDSS), 2015.

[45] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard,
“Information-flow analysis of android applications in droidsafe,” in Proc.
of the Network and Distributed System Security Symposium (NDSS). The
Internet Society, 2015.

[46] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android permission
model and enforcement with user-defined runtime constraints,” in
Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security. ACM, 2010, pp. 328–332.

[47] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks of
android apps,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 241–252.

[48] M. Dam, G. Le Guernic, and A. Lundblad, “Treedroid: A tree automaton
based approach to enforcing data processing policies,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 894–905.

[49] M. Hardt and S. Nath, “Privacy-aware personalization for mobile
advertising,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 662–673.

[50] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. R.
Magrino, E. X. Wu, M. Rinard, and D. X. Song, “Contextual policy
enforcement in android applications with permission event graphs.” in
NDSS, 2013.

[51] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on android for diverse security and privacy
policies.” in Usenix security, 2013, pp. 131–146.

[52] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang, “Airbag: Boosting
smartphone resistance to malware infection,” in NDSS, 2014.

[53] O. Tripp and J. Rubin, “A bayesian approach to privacy enforcement in
smartphones,” in USENIX Security, 2014.

[54] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications.” in NDSS, 2011.

[55] M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna, “Challenges for
dynamic analysis of ios applications,” in Open Problems in Network
Security. Springer, 2012, pp. 65–77.

[56] A. Kurtz, A. Weinlein, C. Settgast, and F. Freiling, “Dios: Dynamic
privacy analysis of ios applications,” Technical Report CS-2014-03 June,
Tech. Rep., 2014.

[57] Valgrind, “Valgrind,” http://valgrind.org.

[58] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “iris: Vetting private
api abuse in ios applications,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 44–56.

[59] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.-R. Sadeghi, “Mocfi: A framework to mitigate
control-flow attacks on smartphones.” in NDSS, 2012.

[60] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and T. Holz, “Psios:
bring your own privacy & security to ios devices,” in Proceedings
of the 8th ACM SIGSAC symposium on Information, computer and
communications security. ACM, 2013, p. 1324.

[61] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, Bugs as
deviant behavior: A general approach to inferring errors in systems code.
ACM, 2001, vol. 35, no. 5.

[62] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in IEEE S&P, 2015.

[63] J. Han, Q. Yan, D. Gao, J. Zhou, and R. Deng, “Comparing mobile
privacy protection through cross-platform applications,” in NDSS, 2013.

[64] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among
a set of programs with jplag,” J. UCS, vol. 8, no. 11, 2002.

cocos2dx

facebook

screensaver

purchasesdk

aliyun

tencent

weibo
domob

Fig. 12: The call relation between libraries. Many benign libraries
(white node) including those famous ones like Facebook, Coco2dx
and Weibo are referring a PhaLib (black node).

APPENDIX

A. Library Referring

We also note that it is very common that a library (sometimes

very famous like Facebook) will refer another one to utilize

its functionalities, which enforces a developer to download the

referred one that they may not be familiar with. So it is more

likely that the developer download a contaminated library. To

understand the security implications of such library referring,

we analyzed all the PhaLibs discovered in our study and the

libraries referring them, as elaborated in Figure 12. In this

figure, gray nodes represent the infected referred PhaLibs, the

white nodes are the libraries referring the PhaLibs and arrows

represent their referring relations. Altogether, we discovered

63 referred PhaLibs, which infect 188 libraries. Among them

are highly popular libraries such as Facebook, Purchasesdk,

Cocos2dk, Weibo and Tencent. For example, the Facebook

library refers a library prime31, which were confirmed to

be potentially harmful by VirusTotal and exhibits potentially

harmful behaviors such as stealing device information, sending

a message, and taking a picture. Also as we can see from

the figure, a legitimate library can be infected by more than

one referred PhaLibs and a PhaLib can also contaminate

multiple legitimate libraries. An example is screensaver, a

library blanking the screen or filling it with moving images. It

is referred by 6 legitimate libraries (e.g., mobiware, wapsad,

entrance, controller) and in the meantime, refers 2 other

suspicious libraries (mobiware and wrapper). Further some

libraries are found to be infected indirectly, such as sponsorpay.

B. Supporting Tables and Figures

373373

iOS libs Has android version

Adwhirl Y

Interactive Y

AdMob Y

iAd N

Flurry Y

AdColony Y

Millennial Media Y

Jumptap Y

Mopub Y

Analytics Y

Tag Manager Y

App Events Y

InMobi Y

Localytics Y

Unity Y

Cordova Y

Corona Y

Adobe Y

PhoneGap Y

Marmalade Y

Appcelerator Titanium Y

Crashlytics Y

Twitter performance metrics Y

Twitter Beta Y

Hockey Y

New Relic Y

Crittercism Y

Bugsense Y

Roboguice Y

Facebook Y

WeChat Y

Pinterest Y

Sina Y

Dropbox Y

MagicalRecord N

Amazon Y

Box Y

Yandex Y

TABLE VI: Top 38 libs (from SourceDNA) and whether they have
Android versions.

Library # Variations # Pha variations

mobclick 181 131

inapp 109 109

gfan 97 97

jirbo 84 84

yrkfgo 53 53

admogo 42 42

sharesdk 27 27

pad 25 3

Leadbolt 24 24

adsmogo 20 20

V1 4 20 20

mobiware 19 19

appflood 14 14

adwo 13 13

zkmm 13 13

mobiSage 8 8

wanpu 7 7

zywx 7 7

imgview 5 5

prime31 5 5

clevernet 3 3

lotuseed 1 1

umpay 1 1

TABLE VII: PhaLibs on iOS and their variations

2
75

82

152

384

651

1029

413

1.16%

5.11%

2.05%

2.03%

2.90%

2.90%
3.07%

3.59%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

0

5000

10000

15000

20000

25000

30000

35000

2008 2009 2010 2011 2012 2013 2014 2015

P
e

rc
e

n
ta

g
e

 o
f

P
H

A
s

N
u

m
b

e
r

o
f

a
p

p
s

Year

Fig. 13: The distribution of such PHAs over the time they stay on
the Apple Store.

iOS: install .ipa file using private API

// WapsSilentRequest - (int)IPAInstall:(id)

int __cdecl -[WapsSilentRequest IPAInstall:](struct WapsSilentRequest *self,

SEL a2, id a3)

{

v26 = a3;

v8 =

dlopen("/System/Library/PrivateFrameworks/MobileInstallation.framew

ork/MobileInstallation", 1);

if (v8)

{

v27 = (int)dlsym(v8, "MobileInstallationInstall");

if (v27)

{

v25 = objc_msgSend(CFSTR("Install_"), "stringByAppendingString:",

v10);

v14 = objc_msgSend(

&OBJC_CLASS___NSDictionary,

"dictionaryWithObject:forKey:",

CFSTR("User"),

CFSTR("ApplicationType"),

v22);

v28 = ((int (__fastcall *)(void *, void *, _DWORD, id))v27)(v25, v14, 0,

v26);

…...

}

}

return result;

}

Fig. 14: Sample Code I (Install apps using private API).

374374

iOS: get installed app list using private API

// WapsRequest - (id)browseApps:(id) id __cdecl -[WapsRequest

browseApps:](struct WapsRequest *self, SEL a2, id a3)

{

v4 = objc_msgSend(&OBJC_CLASS___NSMutableArray, "new");

v5 = (struct objc_object *)objc_msgSend(v4, "autorelease");

v6 =

dlopen("/System/Library/PrivateFrameworks/MobileInstallation.framew

ork/MobileInstallation", 1);

if (v6)

{

v7 = dlsym(v6, "MobileInstallationBrowse");

v8 = CFSTR("Any");

if (v3)

v8 = (__CFString *)v3;

v9 = objc_msgSend(&OBJC_CLASS___NSDictionary,

"dictionaryWithObject:forKey:", v8, CFSTR("ApplicationType"));

((void (__fastcall *)(_DWORD, _DWORD, _DWORD))v7)(v9, callback,

v5);

}

return v5;

}

Fig. 15: Sample Code II (Get installed app list using private API).

iOS: access app’s keychain

v7 = objc_msgSend(&OBJC_CLASS___NSMutableDictionary, "alloc");

v8 = objc_msgSend(v7, "init");

*((_DWORD *)v6 + 2) = v8;

objc_msgSend(v8, "setObject:forKey:", kSecClassGenericPassword,

kSecClass);

objc_msgSend(*((void **)v6 + 2), "setObject:forKey:", v4, kSecAttrGeneric);

if (v5)

objc_msgSend(*((void **)v6 + 2), "setObject:forKey:",

v5, kSecAttrAccessGroup); [identify keychain entry]

objc_msgSend(*((void **)v6 + 2), "setObject:forKey:", kSecMatchLimitOne,

kSecMatchLimit);

objc_msgSend(*((void **)v6 + 2), "setObject:forKey:", kCFBooleanTrue,

kSecReturnAttributes);

v9 = objc_msgSend(&OBJC_CLASS___NSDictionary,

"dictionaryWithDictionary:", *((_DWORD *)v6 + 2));

v12 = 0;

if (SecItemCopyMatching(v9, &v12))

{

objc_msgSend(v6, "resetKeychainItem");

objc_msgSend(*((void **)v6 + 1), "setObject:forKey:", v4,

kSecAttrGeneric, v12, v13, v14);

if (v5)

objc_msgSend(*((void **)v6 + 1), "setObject:forKey:", v5,

kSecAttrAccessGroup, v12);

}

Fig. 16: Sample Code III (Accessing app’s keychain).

iOS: get identifier related with Apple account

v2 = objc_msgSend(

&OBJC_CLASS___NSBundle,

"bundleWithPath:",

CFSTR("/System/Library/PrivateFrameworks/AppleAccount.framework"));

if ((unsigned int)objc_msgSend(v2, "load") & 0xFF

&& (sprintf(&v9, "%s%s%s", "AA", "Device", "Info"),

v3 = objc_msgSend(&OBJC_CLASS___NSString,

"stringWithUTF8String:", &v9),

(v4 = (void *)NSClassFromString(v3)) != 0)

&& (v5 = objc_msgSend(&OBJC_CLASS___NSString,

"stringWithFormat:", CFSTR("appleI%@tIdentifier"),

CFSTR("DClien")),

v6 = ((int (*)(void))NSSelectorFromString)(),

(unsigned int)objc_msgSend(v4, "respondsToSelector:", v6) & 0xFF))

{

v7 = NSSelectorFromString(v5);

result = (id)objc_msgSend(v4, "performSelector:", v7);

}

Fig. 17: Sample Code IV (Get Identifier Related with Apple Account).

Android: permission evasion

@android.webkit.JavascriptInterface

public void startblow(String paramString)

{

LogUtil.addLog("js startblow");

int i

=this.context.checkCallingOrSelfPermission("android.permission.RECORD_

AUDIO") == 0 ? 1 : 0;

if ((this.oldSdkListener != null) && (i != 0)) {

this.oldSdkListener.startblow();

}

}

Fig. 18: Sample Code V (Permission evasion).

375375

Library # Variations # Pha variations Library # Variations # Pha variations Library # Variations # Pha variations

adfeiwo 3 1 gamesalad 8 1 payment 4 1

admob 7 1 gfan 17 3 paypal 2 1

admogo 1 1 giderosmobile 3 1 phonegap 41 1

adpooh 3 1 greenrobot 13 1 pkeg 1 1

adsdk 16 1 http 4 1 platoevolved 10 1

adsense 1 1 igexin 11 3 plugin 17 1

adsmogo 1 1 imadpush 2 1 prime31 100 9

adwo 2 1 imax 1 1 qumi 2 1

adzhidian 6 2 imgview 2 2 rabbit 5 1

airpush 12 3 inapp 2 1 revmob 31 1

androidannotations 2 1 jcraft 9 3 RMjDRvkz 1 1

androidnative 3 1 jirbo 17 1 rrgame 2 2

androidsoft 2 1 joymeng 2 1 screensaver 20 4

ansca 33 9 jpush 25 5 secapk 9 1

appchina 4 2 k99k 3 1 senddroid 7 1

apperhand 11 1 kobjects 12 1 sharesdk 31 1

appflood 11 1 ksoap2 24 1 skplanet 7 1

applovin 8 1 kxml2 2 1 surprise 3 1

Bigfool 3 1 kyview 8 2 swiftp 1 2

bugsnag 2 1 Leadbolt 22 4 tool 9 3

callflakessdk 2 2 letang 9 2 umpay 7 1

cczdt 1 1 lidroid 1 1 unisocial 1 1

cdfg 2 1 livegame 1 1 unity3d 28 1

clevernet 2 1 lotuseed 1 1 uucun 9 2

cnzz 5 2 lthj 5 1 v1 4 3 1

content 11 1 mappn 5 2 vpon 6 2

daoyoudao 3 1 margaritov 5 1 vserv 9 3

dash 1 1 measite 11 1 wanpu 3 1

define 7 1 mobclick 4 1 waps 1 1

demo 2 1 mobiSage 2 1 wapsad 4 1

disneymobile 3 1 mobiware 14 3 widget 3 1

dlnetwork 6 3 mongodb 6 1 winsmedia 3 1

domob 3 1 MoreGames 7 1 wrapper 6 2

esotericsoftware 24 1 neatplug 10 2 yoyogames 14 1

feiwo 3 1 newqm 4 1 yrkfgo 3 1

feiwoone 2 1 ning 2 2 zhuamob 4 1

fivefeiwo 1 1 novell 16 2 zkmm 1 1

flip 2 2 opengl 15 1 zong 7 2

framework 10 1 pad 2 1 zywx 7 1

TABLE VIII: PhaLibs on Android and their variations

376376

