
1

Understanding Illicit UI in iOS apps Through
Hidden UI Analysis

Yeonjoon Lee†1, Xueqiang Wang†2, Xiaojing Liao2, and XiaoFeng Wang2

1Hanyang University, 2Indiana University Bloomington

Abstract—In Chameleon apps, benign UIs are displayed during Apple App vetting while their hidden potentially-harmful illicit UIs (PHI-UI)
are revealed once they reached App Store. In this paper, we report the first systematic study on iOS Chameleon apps, which sheds light
on a largely overlooked threat that the illicit activities are launched solely based on UI. Our research employed CHAMELEON-HUNTER, a
new static analysis approach that determines the suspiciousness of a PHI-UI leveraging the semantic features generated from iOS app
UI and metadata. The approach is based on the observation that PHI-UI not only is structurally hidden but also has notable semantic
inconsistency with the benign UI. Our evaluation shows that CHAMELEON-HUNTER is highly effective, achieving 92.6% precision and
94.7% recall. From 28K Apple App Store apps, we found 142 new Chameleon apps, which were confirmed and promptly removed by
Apple. Our work reveals that Chameleon apps can easily bypass the App store vetting and conduct a set of suspicious activities including
collecting users’ private information, swindling money with fake monetary services, and leading the user to a pirated app store.

Index Terms—Measurement of malware and spam, Mobile security, Evasive apps, Underground services.

F

1 INTRODUCTION

Apple App Store is well-known for its stringent App Review.
They not only continuously update their review guidelines to stay
on top of the trending malware but also quickly ban services or apps
that are suspicious from their App Store. Further, they reject any
apps that use private API which provides access to user’s sensitive
information; recently, they even blocked hot patching frameworks
(e.g., JSPatch) because they can be used to dynamically deliver and
invoke code after App Review. The effectiveness of their review
process is well reflected in the low rate of suspicious apps on
App Store [24]. To circumvent this security check, it has been
reported [56] that iOS Trojans have been increasingly used to
infiltrate the Apple App Store, through embedding stealthy illicit
user interfaces (UI) in innocent-looking iOS apps. So far, little has
been done to systematically discover and analyze such hidden-UI
based Trojans, not to mention any effort to understand their impact.
Chameleons on iOS. We consider apps that conduct suspicious
activities based on a hidden UI as Chameleon apps and conduct
the first systematic study on them. As illustrated in Figure 1, the
Chameleon app provides benign UIs (i.e., music list and song
player) when under Apple’s review, but then unveil its potential
harmful UIs (i.e., crowdturfing [39] UIs that allow users to make
money by performing app downloading tasks, which boosts the
apps’ ranking in a manner forbidden by Apple) once it reaches
a user device. We believe that such apps are able to bypass App
Review because they do not include obvious malicious signatures
(e.g., private APIs), and hide their illicit UI behind the benign
UI. The security implications of such apps, capable of carrying
potentially-harmful illicit UI (PHI-UI), are significant, which,
however, have never been investigated before.

Chameleon apps consist of two fundamental features: (1)
PHI-UI delivers illicit services that significantly deviate from
apps’ declaration [51], which may cause potential damage to
mobile users; (2) PHI-UI cannot be triggered by normal UI

†The two lead authors contributed equally to this work.

interactions, but by certain conditions (e.g., commands from C2
server, environmental states). Such illicit services, once infiltrate
App Store, could cause harm to users, invading their privacy as
well as swindling money out of their pocket. Examples include
conducting sensitive information collection through phishing PHI-
UI, suggesting to purchase premium services or fake lottery through
illicit payment services, leading users to pirated third-party app
stores, displaying pornographic contents.

Building a detection tool for Chameleon apps is non-trivial.
First, instead of directly invoking privileged operations (e.g.,
collecting user’s phone number with private APIs), PHI-UI uses
operations, such as UI rendering, that commonly appear in benign
UIs. Second, PHI-UI is stealthy since it is under the cover of
benign UIs and only gets triggered when specific conditions are
satisfied. Such characteristics place Chameleon apps beyond the
reach of existing detection systems [23], [18] which rely on a
known or predefined set of malware signatures (e.g., private API,
API sequence).
CHAMELEON-HUNTER. In this paper, we make the first step
towards automatic detection of Chameleon apps. Our detection
tool, CHAMELEON-HUNTER, is based on the following key
observations: a PHI-UI of a Chameleon app is not only structurally
‘hidden’ behind a benign UI but also shows notable semantic
inconsistency with the benign one. Based on the observations,
we build the following two main components of CHAMELEON-
HUNTER: Structure Miner and Semantic Analyzer. The Structure
Miner identifies hidden view controllers (VC) based on their unique
structural features; e.g., not allowing the users to leave a suspicious
UI. In our work, we call the hidden VCs checkpoints since they
are potential PHI-UI which requires further investigation. Given
the checkpoint VCs, the Semantic Analyzer measures the semantic
inconsistency between each checkpoint and benign UI to determine
whether a checkpoint VC indeed is a PHI-UI. However, developing
such tool for iOS is non-trivial as static analysis on its apps
accompanies various technical challenges. As we are the first

Fig. 1: A music player with hidden crowdturfing UIs.

to analyze navigation patterns of iOS apps by retrieving the VC
hierarchy (i.e., UI graph) from an iOS app, there neither is a
public documentation we can learn from nor tools we can utilize.
To address these challenges, we carefully reverse engineered iOS
apps (i.e., binary, compiled UI layout files) and the UI builder to
understand how iOS app binary and UI layout files work together
to present an app UI. Below, we outline the designs of the Structure
Miner and Semantic Analyzer.
Structure Miner. By manually analyzing how PHI-UIs are hidden,
we found that navigations from benign UIs to PHI-UIs indeed have
distinctive features. For instance, PHI-UI is often preemptive,
taking over the whole screen as a root UI and thus eliminating
display of benign UI; PHI-UI also restricts users from navigating
back to benign UI. Based on such navigation features, we design a
set of rules (see Section 4.3) to identify structurally hidden UIs.

To analyze UI navigation features, we first build a UI graph
which consists of VCs, VC properties, and transitions between them.
iOS app UIs are found in both binary and UI layout files. To handle
UI in binary, we build a call graph (CG) based on Capstone [4]
to depict UI transitions defined by the iOS APIs. For UI layout
files (e.g., storyboard, nib, plist) we built a tool that reestablishes
the UIs and transitions between them (e.g., restore transition from
Segues). Based on the CG and the reestablished UI information, we
create a labeled view controller graph (LVCG). From the LVCG, the
Structure Miner identifies semantic checkpoint VCs (structurally
hidden), based on the UI navigation features discussed above.
Semantic Analyzer. The Semantic Analyzer focuses on deter-
mining whether the given checkpoint VC indeed is a PHI-UI.
As discussed, PHI-UI and benign UI show notable semantic
inconsistency. More specifically, the texts in PHI-UI (checkpoint
VC and its children VC) are irrelevant to their connected UIs
(e.g., sibling or parent UI); for example, an illicit lottery UI (i.e.,
checkpoint) carrying words such as “money, gamble”, is suspicious
when it appears with a music player UI involving “genre, equalizer,
playlist”. Based on such observation, the Semantic Analyzer
generates semantic features and further uses them to determine PHI-
UI with a supervised learning classifier. The unique UI design of
iOS platform makes it challenging to collect informative text from
resource files and app binary. To resolve the issue, we adopted a
series of noise-removing strategies (e.g, word embeddings, affinity
propagation, tf-idf). Besides, a group of intuitive features, including
cohesion (consistency of words within UIs) and distance (separation
of words between UIs), are designed to infer the semantic difference

between benign UI and PHI-UI. In our study, CHAMELEON-
HUNTER achieved a precision of 92.6% and a recall of 94.7%.
Discoveries. Our large-scale measurement study on over 28K iOS
apps is the first step towards systematically uncovering illicit UIs
(PHI-UIs) on iOS: 142 apps were found to hide illicit UIs that
perform suspicious activities, such as providing a crowdsourcing
platform for malicious purposes (e.g., e-commerce reputation
manipulation), delivering unauthorized content to users (e.g, third-
party app stores, fake news), collecting sensitive information, and
fraudulent online advertising, etc. (see Section 6.1). Surprisingly,
the ranking data indicates that Chameleon apps are impacting a
large number of users: they were discovered from the official App
Store, as well as appearing on the leaderboards, with 14 apps
ranked among the top 100 of their categories.

In addition, we found that triggering suspicious UIs of
Chameleon apps is extremely difficult: besides traditional evasion
techniques adopted on Android platform, such as remote commands
from C2 servers, new techniques are observed to trigger iOS
apps based on complicated conditions. Particularly, the malicious
crowdsourcing apps not only detect whether they have passed
Apple’s review, but also have a triggering condition that involves
user interaction and collusion with a malicious website; Such
techniques were not reported on any other platforms, and bring
new challenges to app vetting. Also our study shows that even in
Apple App Store, repackaging and app clones are widely adopted
in Chameleon apps. Chameleon developers leverage a series of
techniques to keep their apps from being removed from App
Store (e.g., repackaging existing apps and hiding the same PHI-
UI under multiple bundle ids). On top of that, to infect more
users, Chameleon developers were found to promote their apps
through multiple channels, which includes in-app promotion and
pyramid (or referral) scheme, providing users with benefits for
referring Chameleon apps to their friends. Also, we found that
PHI-UI is an in-demand product in the underground market:
e.g., cybercriminals pay hundreds of dollars for Chameleon apps
development. Chameleon apps are clearly harmful to users and
prohibited by Apple: we disclosed our findings to Apple, which
appreciated our work and promptly removed most of the Chameleon
apps from App Store; also upon Apple’s request, we provided a
list of fingerprints of detected apps to assist them in eliminating
the risk of the repackaged Chameleon apps. The video demos and
other materials are provided on a private website [5].
Contributions. The contributions of the paper are outlined as
follows:

• Semantic-based detection of Chameleons apps. We designed an
effective technique which detects iOS Chameleon apps, based on
the observation that illicit UIs not only are structurally hidden
but also have semantic inconsistency from other parts of the app.
Building such a tool is non-trivial as it requires serious effort on
analyzing iOS binary as well as demystifying iOS UI system.

• New findings. Our study shows that Chameleon apps indeed
exist in the wild and are involved in various illicit services. Most
importantly, our study sheds light on a new attack vector that has
long been ignored: conducting suspicious activities based solely on
UI.

2 BACKGROUND

iOS UI design. The UIs of an iOS app include view, view controller
(VC) and data: view defines the UI elements to be displayed (e.g.,

2

button, image, and shape); data is the information delivered through
the defined UI elements; and a VC controls both views and their
data to present a UI. All the VCs of an app and their relations, which
describe the transitions between different UIs, form a VC hierarchy,
with its root (called anchor) being the initial VC of the app or the
VC launched by the iOS object AppDelegate. Implementing a
VC hierarchy can be done using either VC transition APIs (e.g.,
pushViewController:animated), or storyboard [19], a visual tool in
the Xcode interface builder. In the storyboard, a sequence of scenes
are used to represent VCs, and they are connected by segue objects,
which describe transitions between VCs. iOS employs layout files
(a.k.a., nib files) to implement UIs, which can be generated using
storyboard.

Over a VC hierarchy, developers commonly define two kinds
of transitions between a pair of VCs: Modal and Push. A modal
VC does not contain any navigation bar or tab bar, and is used
when developers create outgoing connections between two UIs.
To present a modal VC, the developer can directly use APIs (e.g.,
presentViewController:animated:completion:), or define a modal
segue object [20] in a storyboard. An API needs to be called in
order to dismiss such a modal VC. On the other hand, Push uses
a navigation interface for VC transitions. Selecting an item in the
VC pushes a new VC onscreen, thereby hiding the previous VC.
Tapping the back button in the navigation bar removes the top VC
and reveals the background VC. More specifically, developers can
display the view of a VC by pushing it to the navigation stack using
the pushViewController:animated: API, or define a push segue in
a storyboard. In the meantime, tapping the back button will pop
up the top VC from the navigation stack and makes the new top
displayed.

In our research, we observe that hidden crowturfing UIs exhibits
conditionally triggered navigation patterns in an app’s VC hierarchy,
including multiple root VCs as entry UIs, entry VC not triggered
by the users nor dismissed by itself, etc. (Section 4.3).

Natural language processing. The semantic information our
system relies on is automatically extracted from UIs using Natural
Language Processing (NLP). Below we briefly introduce the key
NLP techniques used in our research.

• Word embedding. Word Embedding is an NLP technique that
maps text (words or phrases) to high-dimensional vectors. Such a
mapping can be done in different ways, e.g., using the continual
bag-of-words model or the skip-gram technique to analyze the
context in which the words show up. Such a vector representation
ensures that synonyms are given similar vectors and antonyms are
mapped to different vectors. Tools such as Word2vec [54] could
be used to generate such vectors. Word2vec takes a corpus of text
(e.g., Wikipedia dataset) as inputs, and assigns a vector to each
unique word in the corpus by training a neural network. In our
study, we leverage Word2vec to quantify the semantic similarity
between the words based on the cosine distance of their vectors.

• Topic model for keyword extraction. Topic model is a statistical
model for finding the abstract ”topics” of a document, and topic
modeling is a common text-mining tool for discovering keywords
from corpora. Among various topic modeling approaches, Latent
Dirichlet Allocation (LDA) [10] is one of the most popular methods.
The basic idea is that documents are represented as random
mixtures over latent topics, where a topic is characterized by
a distribution over words, and the statistically significant words
are selected to represent the topic. In our study, we leverage the
LDA implementation of Stanford Topic Modeling Toolbox [30] for

//Sets invite status to True by parsing url scheme

[AppDelegate application:openURL:options:url] {

 if ([url.scheme isEqualToString:@“sohouermusic”]) {

 [sheCache setInvited];

 }

} 
//Shows different UI based on invite status of sheCache

[AppDelegate application:didFinishLaunchingWithOptions:]{

 if ([sheCache getInvited]) {

 [AppDelegate loadPhiUI];

 } else {

 [AppDelegate loadMusicUI];

 }

}

Music 
ViewController

MusicList 
ViewController

AppDelegate

SHEMain 
ViewController

SHECash

ViewController

SOHTaskList 
ViewController

Benign UI

PHI-UI

Entry,
Url

SHERedBag 
MoneyViewController

UserUser

User

UserEntry,
User

Fig. 2: Pseudocode and VC hierarchies of a Chameleon app.

keyword extraction.

Threat Model. In our research, we consider an adversary who
tries to publish Chameleon apps, iOS apps carrying hidden illicit
content, on Apple App Store. In order to circumvent app vetting, the
adversary hides suspicious UIs behind a fully-functional legitimate
app. Such suspicious UIs present unsolicited contents and require
no additional app capabilities. The adversary has partial knowledge
about app vetting process (e.g., guidelines) and is able to compose
different Chameleon apps and submit them for review. Suspicious
apps that use private APIs or side-loading are out of the scope
of this paper. Also, in our research, we only cover native iOS
apps. The cross-platform framework (e.g., react native) based apps,
which are built using different languages (e.g., javascript), are out
of the scope of this work.

3 A MOTIVATING EXAMPLE

To illustrate our approach, we summarize the characteris-
tics of Chameleon apps through a motivating example, the
com.sohouer.music app (see Figure 1). com.sohouer.music is a
Chameleon that carries both the benign music player UI and
the PHI-UI that allows users to make money by performing
crowdturfing (e.g., app downloading) tasks. The former is displayed
during App Review, while the latter is hidden until the app runs on
the user’s device.

The triggering condition and underlying VC hierarchies (Be-
nign and PHI-UI) are shown in Figure 2. Once the app starts to
run, it first checks whether its PHI-UI has ever been displayed on
the current device by examining a variable [sheCache getInvited],
which is set once the app receives a Custom URL Scheme (i.e.,
sohouermusic://). The result of this check determines which
execution path the app follows. One such path is [AppDelegate
loadMusicUI], which provides users with a Music Player. The
other is [AppDelegate loadPhiUI], which leads users to a Task
List that allow them to download apps. As shown in Figure 2,
both paths come with a VC hierarchy. For instance, the Music
Player component allocates a new UI MusicListViewController and
sets it as the root VC, and further displays MusicViewController
upon a user click. Similarly, for the Task List, the root VC is
set to SHEMainViewController, and the other PHI-UIs (e.g., SO-
HTaskListViewController) woule be shown following the transition.

Compared to other previous malware that hides suspicious
operations (e.g., sensitive APIs) through evasive techniques, this
Chameleon example delivers illicit content by PHI-UI. In the
following, we summarize the characteristics of Chameleon apps
which we utilize for detection in Section 4.

3

Fig. 3: Overview of CHAMELEON-HUNTER.

Distinctive Navigation Patterns. First, to serve different purposes,
a Chameleon app tends to own multiple VCs that serve as the
app entries (i.e., SHEMainViewController and MusicListViewCon-
troller). Second, the entry of PHI-UI is not reachable by normal
user interactions and instead triggered by certain conditions. Third,
once the user enters the PHI-UI, it does not allow the user to
navigate back to the main screen or benign UI.
Clear Semantic Difference. The different functionalities of
benign UI and PHI-UI are well reflected in the words
extracted from the VC hierarchies. As indicated by the
com.sohouer.music case, the benign UI contains Music Player
related words, such as {album, singer, shuffle, song,music, radio},
while the PHI-UIs are filled with content such as
{task, cash, earn,withdrawl, join, pay, reward}.

4 DESIGN AND IMPLEMENTATION

Here we elaborate on the design and implementation of a new
technique for identifying apps with hidden UIs. We begin with
an overview of the idea behind CHAMELEON-HUNTER, and then
present the design details of each component.

4.1 Overview
Design and Architecture. The design of CHAMELEON-HUNTER,
illustrated in Figure 3, is built based on the following key
observations: a PHI-UI of a Chameleon app not only is struc-
turally hidden behind a benign UI but also has notable semantic
inconsistency compared to the benign one. As shown, the tool
consists of three modules: Data Preparation, Structure Miner
and Semantic Analyzer. Their responsibilities are as follows: The
Data Preparation module crawls data (app files, app metadata)
and decrypts apps. The Structure Miner focuses on searching
for suspicious checkpoint VCs through UI navigation pattern
analysis. The Semantic Analyzer generates semantic features for
each checkpoint VCs and uses those features with a supervised
learning classifier to predict whether the suspicious checkpoint
VCs are indeed a PHI-UI; for checkpoint VCs that lack text data,
the Semantic Analyzer determines its suspiciousness by analyzing
the web UI.
How it works. Here we walk through the workflow of the system.
As the Data Preparation module finishes crawling the metadata and
the app file from App Store, the metadata is sent to the Semantic
Analyzer for text processing whereas the app file is decrypted and
disassembled into app binary, UI layout files and resource files.
To conduct UI navigation pattern analysis, the Structure Miner

retrieves UI data (i.e., text on UI, transitions) from the app binary
and UI layout files, and creates a labeled view controller graph
(LVCG); LVCG is a comprehensive UI graph that consists of view
controllers (VC), UI transitions defined between the VCs and the
texts (and attributes) of the VCs. Based on the LVCG, the Structure
Miner searches for checkpoint VCs that matches the suspicious
navigation patterns discussed in Section 3 (e.g., multiple entry UIs,
reachability of UI, etc.). The Semantic Analyzer then processes
the texts of the checkpoint VCs and the metadata of the app
to generate semantic features. Lastly, the generated features are
passed to the classifier for PHI-UI detection. For the checkpoint
VCs with a dominant web UI (e.g., webview), because of the
insufficient amount of text data, the Semantic Analyzer leverages
URL scanner (i.e., VirusTotal) results and determines whether the
given checkpoint VCs are PHI-UIs.

4.2 Data Preparation
To find Chameleon apps in the wild, we collected 28,625 iOS
apps from Apple App Store with a Sikuli-based [57] crawler. After
scanning the entire iOS app list from iTunes Preview website [33],
we selected the apps that were updated after Jan. 1, 2016; those
apps were chosen because Chameleon is a newly emerging threat
and recently updated apps tend to affect more active users. The
difficulty is that Apple is quick in disabling aggressive crawlers’
accounts. To avoid violating their policy, we slowly crawled apps
for 6 month switching in between 35 accounts every 900 apps we
downloaded. Besides downloading the apps, we also collected their
metadata from iTunes Preview website and App Annie [3]. We
include data from App Annie as they provide additional information
such as app version history, app ranking, etc.

4.3 Structure Miner
The Structure Miner is designed to identify the VCs with suspicious
navigation patterns from an app’s disassembled code and UI layout
files. Examples of such patterns include two different main UIs,
as discovered from com.sohouer.music, and the UI that can only
be invoked by a specific network or other events, not directly by
the user, indicating the potential presence of evasive behaviors. To
discover such patterns, we first construct a VC hierarchy in the
form of an LVCG through analyzing the app’s binary and retrieving
UIs from the UI layout files to identify their corresponding VCs
and establish their transition relations among them. Then, from
the LVCG, we search for predefined conditionally triggered UIs
and mark those having these UIs as checkpoint VCs for further
analysis.

LVCG. LVCG is a directed graph as shown in Figure 2, in which
each node is a VC and each directed edge describes a transition
from one VC (corresponding to a UI) to another.

Definition 1. An LVCG is a directed graph G = (V,E, α) over a
node label space Ω, where:

1) V is a node set, with each node being a VC;
2) Edge set E ⊆ V× V is a set of transitions between VCs;
3) Node labeling function α : V → Ω marks each node with its

UI properties and text data. Each node is given four property
labels: entry, user, url, block. Table 1 shows the definition of each
property and the corresponding method names.

LVCG construction. The construction of an LVCG requires both
an app’s binary and its UI layout files. This is because the VC of a
UI is in the code and even the UI itself can be programmed through
APIs (e.g., initWithFrame: API in UIView) so becoming part of the

4

TABLE 1: LVCG node properties and their corresponding method names.

Property Definition Method/Class Names
entry root VC setRootViewController:
user VC triggered by a user interaction addTarget:action:forControlEvents:
url VC rendering web content openURL:, UIWebViewController

block VC that blocks further user navigation dismissViewControllerAnimated:completion:
setNavigationBarHidden:animated:

VC, and in the meantime, all the UIs built through storyboard can
only be found in the layout files, including the transitions between
them. To address this complexity, CHAMELEON-HUNTER builds
two LVCGs, one from the binary and the other from the layout
files, before combining them together.

Specifically, on the binary code, we look for system VC
class names (e.g., UIViewController) and method names (e.g.,
setNavigationBarHidden), which help identify individual VCs and
their properties (see Table 1). Then we track the data flows from a
VC to another to recover the transitions between the detected VCs.
For this purpose, our approach first maps the addresses in the binary
code to symbols (e.g., class name, method name) using a binary
analysis tool Capstone [4], and then uses a set of targeted system
VC class names (e.g., UIViewController) and method names (e.g.,
setNavigationBarHidden) to recognize VCs and their properties
(e.g., entry) from the symbols. After that, the Structure Miner
performs a data-flow analysis using an implementation similar
to the prior techniques [23], [18], to connect the transition APIs
(performSegueWithIdentifier:sender:) discovered in a VC to another
one, the transition target.

To construct a LVCG on the layout files under the storyboard
folder generated by Apple’s interface builder, we need to extract
VCs and VC transitions from the files. The former can be found
from the storyboard plist file that includes the mappings from VC
names to the obfuscated names of nib files. The latter is recorded
by the nib files, each of which carries a subset of a VC’s properties,
e.g., the types of some elements (such as botton, textbox, etc.) and
the transitions between VCs.

Our approach directly recovers VCs from the plist file and fur-
ther detects each VC’s nib files from the mappings it records. More
challenging here, however, is to identify the transitions between
the VCs, since objects included in a nib file are undocumented.
To enable the Structure Miner to interpret the file, we reverse-
engineered part of its format relevant to the transition and content
extraction. Specifically, we started from the interface builder,
through which one can define one or multiple scenes to represent
a UI and a Segue to describe a transition. Through a differential
analysis, we compared the compiled nib files with and without
a specific transition to pinpoint the nib objects corresponding
to different Segue types (e.g., push, modal, unwind), such as
ClassSwapper. From such objects, the Structure Miner is then
able to collect the transitioning data, in the form of src, dst, type,
etc.. This allows us to restore the recorded transition information
and build up the LVCG of an app.

Given the LVCGs generated from the binary and the layout
files, our approach automatically combines them together, based on
the relations between the VCs on these graphs: particularly, when
a transition is found from a VC in the layout to the one defined
in the code, two LVCGs can then be linked together through this
VC pair. On the combined LVCG, further we remove the dead VCs
introduced by the part of libraries and other shared code not used
by an app. To this end, our approach performs a test to find out all
the VCs that cannot be reached from the app’s entry points (such

as AppDelegate, the initial VC of the main storyboard) and drops
them. In this way, we remove 1,053,161 dead VCs (55.4%) from
the 28,625 iOS apps we collect (see Section 4.2).
Mining Semantic Checkpoints. Based on the discussed LVCG,
we formalize the concept of Semantic Checkpoint as follows:

Definition 2. A semantic checkpoint is a vertex v that meets either
of the following conditions:

1) α(v)[‘user′] = F ∧ α(v)[‘entry′] = T ;
2) α(v)[‘user′] = F ∧ α(v)[‘block′] = T ;
3) α(v)[‘user′] = F ∧ α(v)[‘url′] = T ;
4) ∀e ∈ E, e[‘dst′] = v → e[‘src′] = AppDelegate.

Where: T is True, F is False
Our manual analysis on known Chameleon apps indicates that

all PHI-UIs fall into above categories: 1) an entry VC which
is not triggered by the user, but by other external events (e.g.,
network), as the SHEMainViewController in Figure 2, 2) a VC
which is not triggered by the user and blocks further user navigation
(e.g., by hiding its navigation bar); this VC is suspicious as the
user is trapped and not allowed to navigation to other UIs, 3) a
non-user triggered VC with web content (e.g., webview); different
from legitimate apps that trigger a webview by user interactions,
Chameleon apps often pop up a webview with illicit content
when specific conditions are met (see Section 6), 4) a VC only
triggered during startup by AppDelegate; to take over the entire UI
hierarchy, Chameleon developers could present a PHI-UI before
any benign UI is rendered (in com.sohouer.music, the PHI-UI is
created in AppDelegate). As measured in Section 5.2, these rules
not only greatly reduce detection noise by narrowing down the set
of suspicious VCs, but also achieve a good coverage.

4.4 Semantic Analyzer

The Semantic Analyzer focuses on determining PHI-UI: As shown
in Figure 3, it uses a classifier which takes series of semantic
features as input. The semantic features are generated as follows:
Firstly, it compares the semantics of PHI-UI and benign UI of
checkpoint VCs, initial UI shown at app launch time). Secondly, it
utilizes the app’s metadata (e.g., app’s description, version history).
To compare the semantics of PHI-UI and benign UI, the Semantic
Analyzer begins with defining two view controller (VC) sets:
V Cl, V Cr; PHI-UI is represented by V Cl which consists of
the checkpoint VC and its children VCs, while the benign UI
is denoted by V Cr which includes the VCs of the sibling-UI of
checkpoint VCs or the initial UI. Note that the VCs can be collected
by analyzing the LVCG. The Semantic Analyzer then collects text
data from V Cl, V Cr and preprocesses them with the other strings
collected from the app’s metadata and generate semantic features
from them. Finally, the semantic features are used by the classifier
to determine Chameleon apps. In the following, we discuss the
implementation details of Semantic Analyzer.
Preprocessing Text. The collected text data are further processed
to solve a series of problems; i.e., text data in multiple languages,
handling text from code, noise in text data, determining the word
set that represents the dominant (or main) topic of VCs.

5

Translation. The text data collected from apps are in multiple
languages: Chinese, Japanese, Russian, etc. Analyzing such text
is non-trivial; e.g., unlike English, Chinese is written without
delimiters, and thus requires segmentation. To solve this problem,
we use open source tools [31], [29] to split words and then translate
them into English.

Text Tokenization. The text data extracted from binary code needs
to be preprocessed due to their special format (e.g., uploadMedia).
We handle such text by designing regular expressions that cover
common naming conventions; e.g., CamelCase style, hyphen (“-”)
or underscore (“ ”) separated variables, etc.

Noise Removal. Removing the noise from the collected text data
is an important step as the effectiveness of semantic analysis (i.e.,
understanding the topic of UI) depends on how well the noisy
data is removed. In this study, we remove not only common stop
words (e.g., NLTK stop words), but also the frequent words from
iOS frameworks and programming languages. Specifically, we
analyzed 74 framework-libraries of iOS 8.2.1, and collected text
from sections such as cfstring and objc methname. Further,
from the collected text data, we removed words that appeared in
more than 1/5 frameworks utilizing the IDF value. In addition,
we remove program language and debugging related text; for
example, “socket”, “connection”, “memory”, “allocation” are
not related to the functionality (i.e., topic) of the hosting VC
CheckoutViewController. To address such problem, from [6], we
manually selected and blacklisted 1,031 frequent words that cover
Objective-C, Swift, and Javascript.

Determining core word list of VCs. Despite removing noisy words,
word lists of VCs are not in line with the main topic of a VCs. For
example, consider the words in a music list VC, whose main topic
is Music; song titles such as “Can’t Buy Me Love”, or “Butterfly
Effect” deviate from the Music topic. To better understand the main
topic (or semantics) of VCs, we further get the “core” of the word
list (W) by utilizing tf-idf, Word2vec, and affinity propagation (AP):
first, we use Word2vec to create a vector representation (V) of the
words appearing in W; then, to measure the importance of each
word, we utilize tf-idf to assign a weight for each word; further,
through AP, we divide W into several clusters based on closeness
in its vector space and sort the clusters according to their sum of
weights. Finally, we collect the words that considerably represent
the main topic by selecting the most significant cluster (from the
sorted clusters). In the following, we discuss how each feature is
generated.
Feature Generation. In this part, we describe 4 categories of 18
features used for PHI-UI detection. The features are selected and
categorized based on the following observations: 1) the semantic
inconsistency between PHI-UI and the benign UI, 2) the semantic
inconsistency between PHI-UI and the app’s description, 3) the
potentially harmful illicit behaviors of Chameleon apps have similar
goals (e.g., phishing, advertisement, adult content) with known
malicious activities (e.g., email spam), 4) the metadata (e.g., version
history) of Chameleon apps show dissimilar patterns from normal
apps. Below we discuss each feature in detail.

Comparing against benign UI. The semantic inconsistency of PHI-
UI and benign UI are well reflected in their word lists ({Wl,Wr})
and vectors ({Vl, Vr}). We begin with, analyzing how closely VCl

and VCr are related to each other by measuring the cohesion of
the two vectors; the lower the cohesion, the higher the similarity
of words in W. The cohesion of a V is measured by Weighted
Sum of Squared Error (W-SSE):

∑
ω(ν)cosine(ν, c)2, where ω

is a tf-idf based weight function, and c centroid for vectors in
V. W-SSE considers not only within-cluster distance but also the
importance of each word. In addition, we measure how distinct and
well-separated Vl is from Vr. The difficulty is that words PHI-UI
and benign UI may appear in each others W to a limited extent;
UI transitions and the related UI components may exist when the
two UI are connected. To smooth out impacts, we use weighted
average distance (WAD) as it considers the word frequency. WAD
is calculated as follows:

∑
ω(l)ω(r)cosine(l, r)2/

∑
ω(l)ω(r),

where l ∈ Vl and r ∈ Vr. We also take into account the sum of
weights of Wl ∩Wr; the larger the intersection, the higher the
similarity of the word lists. Lastly, we compare Wl and Wr

with 14 explicit topics (e.g., Arts, Business, Sports, Shopping) of
ODP-239 dataset [12]. We use such approach because measuring
the distance between words in a vector space is not enough;
long-distance in vector space indicates dissimilar contexts in the
corpus (in our case, Wikipedia), but does not necessarily mean they
serve different topics. We generate the feature by calculating the
difference between two probability distributions (i.e., prob(Wl)
and prob(Wr)).

Comparing against description. While the description of a
Chameleon app includes accurate description of its legitimate
functionality, it does not state the illicit contents of the app. Based
on such observation, we measure the separation between vectors
of UI ({Vl, Vr}) and description (Vdesc). The challenge is that
developers often describe multiple or even unrelated app features in
description; due to that, WAD approach is not suitable. Instead, we
design an asymmetrical distance approach, extended single-linkage
(ESL) as follows:

ESL(A,B) =

(∑
a∈A

ω(a)min
b∈B

cosine(a, b)2
)/ ∑

a∈A
ω(a)

For each vector a ∈ A, ESL finds the nearest vector in B,
and then calculates an average weighted distance. In this case,
ESL(Vl or r, Vdesc) gives a good estimation of whether words
within a UI are similar (or close) to a part of the app’s description.

Comparing against known malicious behavior. A critical challenge
for PHI-UI detection is the lack of ground truth; the only source we
can refer to is the App Store Review Guidelines [21] as it describes
the illicit behaviors not allowed in the App Store. The problem is
that the guidelines are often abstract and does not contain concrete
information (e.g., a benchmarking dataset). Surprisingly, we found
that in many aspects, the guidelines are consistent with email
spam; e.g., spam emails provide unsolicited promotional services
for some products, whereas review guidelines do not allow apps
primarily made up of advertisements; fraudsters often trick a user
into entering personal information through spam emails, and the
guidelines state that such behavior is not allowed. Based on such
findings, we compare spam activities with the word list W; we
collected 304 unique spam trigger words [35] (e.g., easy cash, job
offer) and measure the ESL between vectors of UI ({Vl, Vr}) and
spam (Vspam).

Distinctive patterns in metadata. We also generate features utilizing
the version history of an app on App Store as it reflects the number
of times an app was inspected by Apple; we assume that the higher
the version number, the less likely an app is a Chameleon app.
Moreover, we check whether the author type of an app is individual
or enterprise. Chameleon apps tend to be developed using an
individual account; enterprise developer accounts are difficult to
apply and expensive. We carefully assume that developers would

6

TABLE 2: Feature vector examples.

V Cl V Cr

Comparing Comparing Comparing against Distinctive
Chameleonagainst benign UI against description known malicious behaviors patterns in metadata

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18

PlayCatVC LEQEarnVC 0.43 0.78 0.91 0.0 0.91 N 0.31 0.0 0.85 0.0 0.27 0.0 0.35 0.18 1.0 Individual N N Y
MusicVC SHECleanVC 0.55 0.64 0.81 0.0 0.83 N 0.23 0.14 0.51 0.0 0.33 0.0 0.24 0.14 1.5 Individual N N Y

ReadingVC ReportVC 0.62 0.79 0.29 0.57 0.36 Y 0.19 0.38 0.34 0.14 0.38 0.0 0.40 0.0 4.3 Enterprise N N N
SFMContainer SFMHomeVC 0.69 0.55 0.28 0.71 0.36 Y 0.36 0.0 0.25 0.14 0.34 0.0 0.28 0.0 4.3 Enterprise N N N

F1 = cohesion(Vl), F2 = cohesion(Vr), F3 = WAD(Vl, Vr), F4 = weight(Wl ∩Wr), F5 = dist(prob(Wl), prob(Wr));
F6 = index(max(prob(Wl))) == index(max(prob(Wr)), F7 = ESL(Vl, Vdesc) F8 = weight(Wl ∩Wdesc), F9 = ESL(Vr, Vdesc);
F10 = weight(Wr ∩Wdesc), F11 = ESL(Vl, Vspam), F12 = weight(Wl ∩Wspam), F13 = ESL(Vr, Vspam), F14 = weight(Wr ∩Wspam);
F15 = version, F16 = author type, F17 = in-app purchase(V Cl), F18 = in-app purchase(V Cr)

less likely risk (account may get disabled) their enterprise account
for developing Chameleon apps.
Classification of PHI-UI. To predict whether the suspicious
checkpoint VCs are indeed PHI-UIs, the Semantic Analyzer
utilizes the generated features with a supervised learning classifier.
Specifically, the Semantic Analyzer uses an SVM classifier as it
tends to be resilient to overfitting. Table 2 shows feature vector
examples. The V Cl and V Cr represent the UIs being compared.
The features are sorted according to their categories: F1–F6 show
the semantic comparison result obtained by comparing potential
PHI-UI against benign UI; F7–F10 indicate whether potential
PHI-UI is consistent with app’s description; F11–F14 indicate
whether PHI-UI are related to known malicious activities; F15–
F18 reveal whether the app’s metadata patterns are similar to those
of Chameleon apps.

The structurally hidden checkpoint VCs identified by Structure
Miner may include VCs that deliver contents mostly through
WebView; those VCs that 1) lack text data, 2) embed URLs are
difficult to analyze without manual analysis (e.g., web pages require
authentication, URL only works under specific parameters). We
handle such cases by relying on VirusTotal [17]; we submit the
URL and use the results to measure the suspiciousness of the
web content. The URLs are collected by tracking APIs including
openURL:, loadRequest:. Such VCs are considered as Chameleon
since suspicious contents are indeed delivered through structurally
hidden UIs.

5 EVALUATION

5.1 Experiment Setup
App Collection. We collected 28K apps, covering 25 app cate-
gories. Release dates of these apps range from Jul. 11, 2008 to
Jul. 19, 2017, all of which have been updated after Jan. 1, 2016.
Duplicates are removed based on bundle id and version. To decrypt
these apps, we ran Clutch on an iPhone 5s (8.1.2) and iPhone 5c
(9.0.1). Apps that failed to decrypt are not included in the app set.
Confirmed Apps. Our study is based on 17 manually collected
apps; the apps were collected from VirusTotal and 91ssz [1], a
website which provides apps with illicit features that are against
Apple’s guidelines (e.g., spam forums, earn money). All 17
confirmed apps were manually verified to structurally hide a PHI-
UI behind a benign UI.

Labeled and Unknown Dataset. To create the labeled-bad-set,
from the 17 confirmed cases, we manually collected 41 PHI-UI
VCs. However, 41 PHI-UI VCs are not enough; to address the
problem we collected more pairs of VCs from the LVCG. As
discussed in Section 4, CHAMELEON-HUNTER generates features
by comparing a checkpoint VC c to its parents pc or siblings sc. We
expand the bad set as follows: for {c, pc} pair, we follow outgoing
LVCG edges of c to construct a forward spanning tree (FST), and

TABLE 3: Types of semantic checkpoints.

UI
of VC Checkpoint

Type 1 Type 2 Type 3 Type 4

Benign UI 31 7 0 4
PHI-UI 19 2 18 2

incoming edges of pc for a backward spanning tree (BST); each
pair of VCs from FST and BST are used to generate a feature vector.
Through such approach, {c, pc} gets enlarged to |FST | ∗ |BST |
vectors; the bad set of 17 apps are increased to 399 vectors. Another
simple approach is to use over-sampling (e.g., SMOTE) to augment
the bad set by including nearby vectors. However, our experiments
show that given the sparseness of existing bad set, SMOTE tends
to push the decision boundary towards unwanted directions and
leads to more false positives. On the other hand, to create the
labeled-good-set, we first randomly selected 800 from 28k apps
and generated 996 feature vectors out of 800 apps. Lastly, for the
unknown dataset, we generate 35,696 feature vectors from the
34,639 checkpoint VCs identified by the Structure Miner.

5.2 Effectiveness and Performance

Checkpoint Mining. From 28K apps, Structure Miner identified
34,639 (1.7%) semantic checkpoints out of 2,005,030 VCs; while
Structure Miner cannot pinpoint PHI-UI, it significantly decreases
the number of VCs that needs to be analyzed by the Semantic
Analyzer. In addition, we ran it on 17 confirmed Chameleon apps;
83 VCs were identified as checkpoints which included all 41 VCs
manually confirmed as PHI-UI. In Table 3 we further show how
the 83 checkpoint VCs distribute over the five checkpoint types
(See Definition 2 of Section 4).

Classifier Evaluation Results. To determine PHI-UI, we build
an SVM classifier of C-SVM type with a linear kernel; we use
SVM as it tends to be resistant to overfitting. We leverage CVPa-
rameterSelection to optimize the cost parameter C. Specifically,
we search C in space (0.02, 1.0) with 50 steps and accordingly
set it to C = 0.94. The ten-fold cross-validation results show
that CHAMELEON-HUNTER is highly effective, with a precision
of 92.6% and recall of 94.7% on PHI-UI class (threshold=0.50).
With a threshold of 0.80, the precision rises to 98.3%, while recall
remains above 85%.

We further discuss the effectiveness of each category of features;
we ran the classifier again only using each category of features
at a time. As shown in Table 4, each feature gives a certain
confidence for detection, with F-measure ranging from 61.9%
to 77.7%. Among the features, “Patterns in metadata” plays an
important role (F-measure 77.7%). This result is intuitive: for
instance, consider the author feature, the benign apps often release
bug fixes and new features frequently to keep them top of mind,
while the confirmed Chameleon apps stay stealthy, without raising

7

TABLE 4: Evaluation of features.

Category FP FN Precision Recall F-measure
Overall 30 21 92.6% 94.7% 93.7%
Comparing against benign UI 155 122 64.4% 69.4% 66.8%
Comparing against description 44 142 85.4% 64.4% 73.4%
Known malicious behaviors 69 189 75.3% 52.6% 61.9%
Patterns in metadata 113 74 74.2% 81.5% 77.7%

Apple’s attention. Meanwhile, “Comparing against benign UI” and
“Comparing against descriptions”, which describe the semantic
difference between PHI-UI and the expected behavior of the app,
are effective, with an F-measure of 66.8% and 73.4% respectively.

Detection Results. In our study, CHAMELEON-HUNTER detected
142 new Chameleon apps; among them, 104 apps were determined
by the SVM classifier, while 38 apps were identified by inspecting
the URLs of web UIs embedded in structurally hidden (checkpoint)
VCs.

From the unknown set (35,696 vectors), with threshold=0.80,
the SVM classifier determined 112 new suspicious apps. Due to the
absence of ground truth (e.g., virus scanner), we manually validate
the apps based on simple but effective rules: 1) we check whether
reported PHI-UIs are indeed hidden. Such rule is based on the
assumption that a Chameleon hides its PHI-UI by default, and
only activates it under certain conditions (e.g., through a remote
message). For that purpose, we examine whether the PHI-UI is
reachable through regular UI navigation during app’s first launch
after app installation under the restricted settings. 2) We check
the semantic consistency of PHI-UI and the app’s description; if
the PHI-UI is described in the app description, we consider such
case as benign. The experiment was conducted on an iPhone 6, in
airplane mode with all third-party apps removed. The results are
shown in Table 5. Among the 112 apps that were determined by
the classifier, 92.9% (104 apps: 99+5) are true positives (TP:m);
we failed to test 5 suspicious apps dynamically as they either won’t
open or do not respond at all on initial UIs under restricted settings.
Further inspection shows that they hang when syncing with off-
line servers, while the PHI-UIs are guarded by a certain response
(e.g., server time < “2015-05-03”, “isInReview”). We consider the
8 remaining apps as false positives (l and s). Among them, 2
apps (l) are clearly benign as they include a suspicious UI that is
not only reachable but also consistent with the app’s description.
CHAMELEON-HUNTER fails to perceive the semantic similarity.
On the other hands, the other 6 (s) apps are tricky as PHI-UI are
reachable but semantically inconsistent with the app’s description.
We consider these cases as false positives, since the inconsistent
content (e.g., “recruiting messages” left by the app developer)
is not harmful to mobile users. Additionally, we checked 3,189
URLs extracted from 34,639 structurally hidden checkpoint VCs,
and 12 URLs were identified as harmful. These URLs lead to the
discovery of 38 Chameleon apps that deliver PHI-UI through web
UI in hidden VCs. As discussed in Section 4, we determine the
suspiciousness of the web UI contents based on VirusTotal, which
aggregates more than 60 antivirus products. Note that VirusTotal
has been used to obtain ground truth in security research [14], [40],
[34], [37], [47] and involved in industry security projects [17]. Most
importantly, we reported the Chameleon apps to Apple; since then,
the reported apps are quickly being removed (109 apps so far) from
the App Store. We also checked the updated version of the leftovers,
and found that suspicious payloads of 5 apps are completely
removed. We are unable to get further information for the other

TABLE 5: Evaluation of suspicious cases.

Reachability of PHI-UI Semantic Consistency of # of Chameleonin Restricted Settings PHI-UI and App Description Apps
7 7 99 m

Failed1 7 5 m

3 7 6 s
3 3 2 l

3: Yes, 7: No, m: TP, l: FP, s: indeterminable
1 Apps that are not responding or require an invitation code.

ones, since Apple’s investigation, including its communication with
the app developers, is a hidden process.

The false positive rate (FPR) could further be reduced by
vetting the app description more strictly during Apple’s App
Review process. For instance, the critical factor for misclassification
of DBRechargeVC, a discount variety store app (main topic is
“recharge account”), is due to the semantic inconsistency between
the app UI and the app’s description; while the word list of VC
included monetary service related words, the app description did
not. Furthermore, there are no indicators (e.g., shopping) even in
the other part of the app’s metadata.
Performance. To evaluate the performance of CHAMELEON-
HUNTER, we measured the time it takes to process all the apps
in the unknown dataset on a Red Hat server using 14 processes.
On average, 29.11 seconds (18.88 seconds for Structure Miner
and 10.23 seconds for Semantic Analyzer) were spent on each
app. The results demonstrate that CHAMELEON-HUNTER scales
much better than other techniques (e.g., dynamic analysis, symbolic
execution) [11], [48] and can easily process a large number of iOS
apps.

6 MEASUREMENT

Based on the detected Chameleon apps, we further performed a
measurement study to understand the illicit UI in iOS apps based on
hidden UI. In this section, we first present the scope and magnitude
of this malicious activity as discovered in our research (Section
6.1), then we describe the infiltration techniques (Section 6.2), and
lastly provide case studies of interesting Chameleon apps (Section
6.3).

6.1 Landscape
Hidden Suspicious Activities. Table 6 summarizes suspicious
activities launched by Chameleon apps and the corresponding
review guideline each activity violates, as elaborated below.
• Malicious crowdsourcing platforms. We observe 38 Chameleon
apps’ PHI-UIs are used as malicious crowdsourcing platforms.
More specifically, those PHI-UI provides a list of illicit paid tasks
for users. The illicit tasks include fake review and paid download to
increase app ranking; fake transaction for e-commerce reputation
manipulation.
• Unauthorized content. Another large portion (58 apps) of
Chameleon apps deliver unauthorized content through a structurally
hidden UI. For instance, two apps are reported to serve as the entries
for third-party app stores, which mainly deliver jailbreak tools and
pirated apps. Moreover, an app called “joking & minesweeper”,
com.apushi.wan, recommends users to install an unprotected and
unrelated enterprise app on http://115.29.198.162. Also surprisingly,
we observed 11 Chameleon apps that distribute fake news. In
particular, these apps, with a benign facet of Photo&Picture,
display fake news of McDonald’s (i.e., selling overdue foods,

8

TABLE 6: Suspicious activities of PHI-UI.

Activity # of Cases Apple’s
Apps Guideline

malicious 38 app ranking manipulation platform hidden in a music player 2.3.1crowdsourcing a service to promote E-commerce seller’s reputation

58

display content of compromised website or a third-party app store 2.5.6
unauthorized show bad news about a corporation (e.g., McDonald’s) 2.3.1
content spread p2p player with adult content 3.2.2

show lottery content in Health & Fitness app 2.3.1
personal data 14 get your blood pressure in Radio FM app 5.1.1collection in Travel app, show online dating site that requests DOB, SSN, etc.
ad fraud 7 a Temple Run style app replaced by ‘watching ads, get lucky money’ 2.3.1/3.1.4

Others 25 in-app promotion (e.g., referring user to shopping items) 2.3.1a “totally-free” app hides remote controllable payment UI

which is confirmed by its official microblog [2]). Such fake
news, although different from traditional malicious apps, has a
tremendous potential to cause real-world and long-lasting impacts
on individuals and businesses, as indicated by [38].
• Sensitive information collection. 14 apps are inspected to aggres-
sively collect sensitive information. For instance, we observed that
a radio broadcasting app cn.doradio.radio collects health data (i.e.,
blood pressure) without a clear reason. Additionally, we found a
delivery tracking app hiding a mortgage/income calculator inside.
These cases, not necessarily malicious though, are suspicious since
the sensitive data is collected stealthily.
• Ad fraud. Furthermore, interestingly, we found that several apps
fraudulently represent online advertisement to increase ad watching
time and gain profit. In the pay-per-ad-view business model, an
advertiser pays a publisher (i.e., the app owner) based on the
number or time of ad view. For instance, com.funinteract.ballgame,
a Temple Run style game app, once activated on a user’s device,
completely turns into a red envelope [53] app; whenever the red
envelope is activated, the user is required to watch several Unity
video ads. Red envelope is a tradition to give lucky money to friends
during certain events (e.g., weddings) and is popular in Asia.
• Others. Chameleon apps are also observed to include other
activities, such as offering suspicious monetary services. As
required by Apple, developers must use in-app purchase (IAP) to
secure users’ transactions (e.g., subscriptions to premium content).
However, in our study, developers of 8 apps labeled them “totally
free”, but meanwhile hide a remote controllable third-party payment
page.
Scope of impacts. The Chameleon apps discovered in our ex-
periment are found from 16 App Store categories. Note that the
app category corresponds to the functionality of the benign UI
since it is the UI shown during Apple’s App Review process.
As shown in Table 7, over 65% of Chameleon apps fall into
Utilities, Music, and Entertainment. Also, we found that benign
UIs, such as recorder, piano pieces, and file manager, are favored
by Chameleon developers (possibly) as they are relatively simple
to develop and maintain. Moreover, a group of Books apps were
discovered to simply include a different list of books and share
most of the code. This indicates that repackaged iOS apps could be
a potential source for conducting malicious activities. Furthermore,
the ranking data available from App Annie [3] demonstrates that
the impacts of Chameleon apps are critical, affecting a large number
of users. For instance, 4 apps, including com.funinteract.ballgame
(red envelope under game UI) and cn.qimai2014.polarbearwifi
(malicious crowd-sourcing under wifi helper), reached top 20 of the
leaderboard across different countries (e.g., China, Laos). Despite

TABLE 7: Top 5 App Store categories of Chameleon apps.

Category # of Apps Benign UI Examples
Utilities 36 (25.4%) Recorder, File Manager
Music 30 (21.1%) Ringtones, Piano Pieces
Entertainment 27 (19.0%) Web Browsers, Jeopardy-style Quiz
Reference 14 (9.9%) WiFi Helper, Funny Pics/Jokes
Books 7 (4.9%) Book Reader, List of Novels

of the incomplete ranking data from App Annie, we found that at
least 8 apps were once reported in top 50 and 14 apps in top 100
within their corresponding categories (check [5] for more details).
This is an indicator that chameleon app developers are motivated
to promote their apps’ ranking in order to attract more victims
and achieve greater revenue. We are unable to measure the exact
number of users being affected, as Apple provides no clue for
number of downloads in any way. However, the aforementioned
ranking data implies that Chameleon apps are affecting a large
group of users.

In addition, we found that most Chameleon apps (53%) have
only few updates, with a version number in the range of (0, 1.5].
However, still a large portion of Chameleon apps (40% apps have
Version ≥ 2.5) are capable of carrying their suspicious payload
even to higher version; this observation is interesting as Chameleon
apps need to undergo Apple’s inspection for every new version
submitted to the App Store. We carefully infer that malicious
actors could either hide illicit content in app’s initial submission, or
flexibly insert it in following app updates, since Apple is incapable
of detecting them in any phase. We also analyze the distribution
of Chameleon apps over the release date. During the 6 months
period ([Jul.2016, Jan.2017)), the probability of an app being
Chameleon is as high as 0.8%. The linear forecast (regression)
trend-line also indicates that Chameleon is still on the rise and
requires further attention.

6.2 Understanding Chameleon Infiltration
Chameleon app Development. Chameleon app developers tend
to create the benign UI, which covers the PHI-UI, with less effort
as it is not their source of profit. One common approach is to add
PHI-UI to existing app templates or open source projects ([36],
[49]). According to Apple’s guidelines [21] (4.3 and 4.2.6), such
template apps should have been rejected. However, Apple seems
to relax the policy, which makes Chameleon developing easier.
To verify such observation, we designed a Chameleon app with
ESTMusicPlayer [36] as the benign template; the app indeed is
malicious as it shows a phishing UI once activated on user’s device.

9

Amazingly, it got into App Store within two days (we removed it
immediately).

More interestingly, Chameleon app development is in demand
in the underground market. Based on our research, one could get a
Chameleon app, with the desired PHI-UI, on the App Store for only
$450 [28]. Specifically, a quick search on Google yields dozens
of recruitment posts for Chameleon app development; e.g., free-
lancer [28], [27], Code Mart [16], witmart [55], dongcoder [22],
Code4App [15].
Circumventing Apple’s App Check. To bypass Apple’s App
Review process, Chameleon apps show PHI-UI only under
specific conditions. We found that Chameleon apps use various
traditional triggers, which includes commands from C2 servers (e.g.,
“uitype:2”), geographic locations (“isCN”), time, device states (e.g.,
jailbroken device, connected to cellular), device information (IP
address, language), etc. Particularly, triggering conditions of several
apps (e.g., com.91luo.91Ring app) were found to be far more com-
plicated than others; e.g., a Chameleon developer first encourages
users to download his app from App Store. Simultaneously, he
provides an activation link on his website. When the activation link
is clicked, a scheme (e.g., babyforring://[params]) that releases
the app’s illicit UI is send from Safari to the Chameleon app. This
trick is by no means a novel technique. However, the existence of
such complicated triggers brings a new challenge for app vetting.
(see Section 6.3 for details)
Tactics to Reach Users and Reside in App Store. To attract
more users, Chameleon developers promote their apps: using App
Store Optimization (ASO); advertising on forums, media-sharing
websites and social-networking services (e.g., AppKarma [25]).
Another interesting channel is the pyramid scheme which provides
rewards for finishing tasks. Chameleon app developers pay users if
they refer the app to their friends; users are further rewarded for
their friends’ referrals as well.

Moreover, Chameleon developers resubmit clones of removed
or existing Chameleons by only changing its bundle ID through
a different Apple developer ID; e.g., after com.cloud.NHCore
was removed from App Store, it was quickly resubmitted as
com.good.jingling. Developers also submit multiple repackaged
apps containing the same PHI-UI (i.e., suspicious activity); e.g.,
7 book-reading apps from developer 1098099338 were found to
integrate the same malicious crowd-sourcing platform. To mitigate
the threat of such persistent activities, we provided a list of words
that could help fingerprinting such apps upon Apple’s request,
and meanwhile are actively collecting resubmitted/repackaged
Chameleon cases.

6.3 Case Studies

Here we elaborate on a few real-world Chameleon cases found in
our study to help understand their behaviors in detail.
A Magic “Music Player”. As mentioned in Section 6.1, a group
of Chameleon apps are reported to provide illicit crowdsourcing
services to device users. Among them, the most typical is so-
houermusic, whose innocent side is a music player, also serving
as an illicit crowdsourcing platform to distribute app ranking
manipulation tasks (download, install, make up fake reviews, etc.)
to individuals. We observed that triggering the illicit service is
surprisingly difficult, and such triggering process is designed to
evade app vetting. Specifically, the sohouermusic app is promoted
on popular social networks (e.g., WeChat), which will redirect
users to a website (play.sohouer.com). Only when a user visits

the website on his iPhone and achieves an invitation scheme
sohouermusic://invite=[serial number] sent, the app tries to load
the Chameleon UI. However, before the UI is actually rendered,
the sohouer app checks whether it has passed vetting process
via its remote server, and the Chameleon UI shows up when the
remote server responds with “isreview: 0” and a scripturl. Note
that the response from remote server is set by the app developer
once he notices the app enters the App Store. Besides acting as an
illicit crowdsourcing platform, the Chameleon app also stealthily
collects user data (e.g., device type, version, jailbreak, location).
Another interesting observation is that the sohouermusic developers
are so persistent. After the sohouermusic app was removed, the
Chameleon UI was quickly repackaged into a sohouercamera app
and submitted under different developer account.
Lucky Money in Rolling Ball Game. We found that a Chameleon
app is hidden behind a rolling ball game, in which the user needs to
avoid obstacles with a rolling ball, like the well-known Temple Run
game. Similar to sohouermusic, for its Chameleon UI triggering,
the app talks with its server 203.195.143.105 to determine whether
it has passed the vetting process. An affirmative reply turns the
app into a “lucky money” app, rewarding users for ad view.
Interestingly, besides ad fraud, the “lucky money” app tries to
collect users’ phone number by popping up another malicious
phishing UI. Further investigation shows that the “lucky money”
facet provides a tutorial to unlock a pornographic video player
on http://74.121.149.110/. Such kind of Chameleon apps, designed
to provide illicit content to users, may have potential impacts on
individuals and require attention from App Store.

7 DISCUSSION

Chameleon apps, detected in our research, circumvent app vetting
by hiding the PHI-UI behind a legitimate UI. However, there are
other approaches adversaries can utilize to reach the App Store
without getting detected: PHI-UI can be delivered on runtime
using dynamic code loading which includes hot patch frameworks
(e.g., JSPatch [9]) that allow developers to modify the native
code of an app at runtime; Chameleon apps can be obfuscated
(e.g., class/method names and strings) using tools such as PPiOS-
Rename [45]. Such approaches can be tackled through dynamic
analysis as the UI structure and the semantics of the UIs delivered
through dynamic payload, web-content and obfuscated code could
be analyzed on runtime. However, dynamic analysis may suffer
from the code coverage issue and would not be able to detect
PHI-UI of Chameleon apps without handling the complicated
trigger conditions. Techniques, such as concolic execution, can be
complementary to our semantic inconsistency analysis, and the
two could be combined to provide a better CHAMELEON-HUNTER.
On the other hand, Apple regulates and carefully monitors those
dynamic code enabling techniques (e.g., hot patching frameworks)
to minimize the attack vector; recently, Apple even decided to ban
or reject any apps that use hot patch [42] from their App Store.
Also, while obfuscation can become popular in the future, our
experiments show that it is yet rare on iOS: none of 500 manually
inspected apps (including Chameleon cases) were obfuscated. In
addition to the cases mentioned above, CHAMELEON-HUNTER

fails to detect PHI-UIs that have similar meanings to benign UIs.
For instance, a Finance app (e.g., finance related forum, news, etc.)
that shows PHI-UI which tricks users to enter personal information
(e.g., name, phone number, address) for lower interest rate could
not be detected.

10

8 RELATED WORK

Detecting harmful iOS apps. Compared to Android, iOS apps
have not been studied much. PiOS [23] uses control flow analysis
to detect privacy leaks in iOS apps. iRiS [18] combines binary
instrumentation with static analysis and detects private API abuse
in iOS apps. Chen et al. [14] determines potentially harmful iOS
libraries by looking for their counterparts on Android. Nevertheless,
none of the prior research notices the threats of iOS hidden UI,
which bypasses App Store vetting and delivers suspicious content
(e.g., phishing) to iOS users. Many works, such as [13], [52], focus
on detecting privacy leaks in Android apps; similar to PiOS, they
are ineffective in hidden UI identification.
Evasive mobile apps. Chameleon app falls into the general
category of evasive malware targeting App Review. While there are
several prior works on Android, we are the first to study evasive be-
havior on iOS. Moreover, prior works on evasive malware focus on
handling triggering conditions and simply rely on sensitive APIs to
determine its suspiciousness, while our work focuses on suspicious
activities conducted only through UI. TriggerScope [26] relies
on symbolic execution to detect suspicious triggering conditions
of Android apps and check whether the path from the condition
leads to a sensitive API. HsoMiner[43] classifies hidden sensitive
operations on Android with a set of evasion-specific features.
Recently, a report [50] discussed a Chameleon-like malware from
Google Play: a multi-stage Android app that hides its malicious
activities (i.e., phishing bank service) behind its legitimate-looking
UI. Similarly, Google has removed these independent cases; such
report shows that Google Play Protect could be circumvented, and a
systematic understanding of Chameleon is necessary. Besides, there
has been no report of evasive malware infiltration in enterprise-
owned app market [7], [8], which is reasonable given the strict
store administration and the less benefit malware may get from the
small user base.
Identifying suspicious activities using NLP. NLP has been de-
veloped over decades and adopted in various fields (e.g., search en-
gines, machine translation). In recent years, it has also been widely
adopted in security analysis. WHYPER [44] and AutoCog [46]
checks whether an Android app indicates its permission usage in
app’s description. SUPOR [32] and UIPicker [41] aim at identifying
sensitive user inputs within user interfaces by NLP techniques. Liao
et al. [40] checks semantic inconsistency between a sponsored top-
level domain (sTLD) and its content, to detect whether the sTLD
is compromised by promotional infection. Different from these
works, our study focuses on detecting suspicious PHI-UIs in an
iOS app by measuring semantic inconsistencies between its UIs.

9 CONCLUSION

In this paper, we conduct the first systematic study on Chameleon
apps. Our detection tool, CHAMELEON-HUNTER, identifies PHI-
UIs with a set of semantic features generated by a suite of nontrivial
techniques: e.g., UI transitioning pattern and semantic analysis. Our
discovery of 142 Chameleon apps on the official App Store, sheds
light on the various suspicious activities conducted by Chameleon
apps. Most importantly, we disclosed our findings to Apple, which
promptly investigated the newly-exposed threat and removed most
of the Chameleon apps or disabled the suspicious UIs. For more
details (e.g., demos and impacts) please check our website [5].

As future work, we intend to study the hidden UIs introduced
by dynamic code loading using dynamic analysis. Also, to boost
accuracy of our approach to be suitable for a market-scale detection,

we plan to make a variation of CHAMELEON-HUNTER which
targets specific activities (e.g., hidden UIs that collect user health
data) instead of detecting all suspicious activities. Lastly, as
CHAMELEON-HUNTER relies heavily on retrieval of app meta-
data, the accuracy of our approach would improve according to
Apple’s provision of more accurate and detailed app meta-data
(e.g., app’s description).

10 ACKNOWLEDGEMENTS

We are grateful to our the anonymous reviewers for their in-
sightful comments. This work is supported in part by NSF
CNS-1801365, 1527141, 1618493, 1801432, 1838083, ARO
W911NF1610127, and Hanyang University HY-2019-N (Project
number: 201900000002835). Yeonjoon Lee is the corresponding
author of this paper.

REFERENCES

[1] Making money with your iphone. http://www.91ssz.com.
[2] Official statement of mcdonald’s. https://www.weibo.com/1947211342/

ya3l4kf5u.
[3] App annie. https://www.appannie.com/en/, Mar. 2010.
[4] Capstone: The ultimate disassembler. http://www.capstone-engine.org,

Nov. 2013.
[5] Supplement materials: Chameleons on app store (ios). https://sites.google.

com/site/ioschameleons/, 2018.
[6] anvaka. Common words in programming languages. https://anvaka.github.

io/common-words, Dec. 2016.
[7] A. Armando, G. Costa, A. Merlo, and L. Verderame. Enabling byod

through secure meta-market. In Proceedings of the 2014 ACM conference
on Security and privacy in wireless & mobile networks, pages 219–230.
ACM, 2014.

[8] A. Armando, G. Costa, L. Verderame, and A. Merlo. Securing the” bring
your own device” paradigm. Computer, 47(6):48–56, 2014.

[9] bang590. Jspatch: bridging objective-c and javascript using the objective-c
runtime. https://github.com/bang590/JSPatch, May 2015.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993–1022, 2003.

[11] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[12] C. Carpineto and G. Romano. Optimal meta search results clustering. In
SIGIR, pages 170–177. ACM, 2010.

[13] H. Chen, H.-f. Leung, B. Han, and J. Su. Automatic privacy leakage
detection for massive android apps via a novel hybrid approach. In ICC,
pages 1–7. IEEE, 2017.

[14] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
Y. Zhang, and W. Zou. Following devil’s footprints: Cross-platform
analysis of potentially harmful libraries on android and ios. In SP, pages
357–376. IEEE, 2016.

[15] Code4App. Code4app: Looking for ios chameleon app developer. http:
//www.code4app.com/thread-14820-1-1.html, Sep. 2017.

[16] coding mart. Recruitement for ios chameleon app developer. https:
//mart.coding.net/project/11325, Nov. 2017.

[17] V. Community. Virustotal: Credits & acknowledgements. https://www.
virustotal.com/en/about/credits/, Sep. 2012.

[18] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu. iris: Vetting private
api abuse in ios applications. In CCS, pages 44–56. ACM, 2015.

[19] A. Developer. Storyboard: Guides and sample code.
https://developer.apple.com/library/content/documentation/General/
Conceptual/Devpedia-CocoaApp/Storyboard.html, Sep. 2013.

[20] A. Developer. Using segues. https://developer.apple.com/library/content/
featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html, Sep.
2015.

[21] A. Developer. App store review guidelines. https://developer.apple.com/
app-store/review/guidelines/, Dec. 2017.

[22] dongcoder. In demand of chameleon for app vetting. http://www.
dongcoder.com/detail-678294.html, Sep. 2017.

[23] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy
leaks in ios applications. In NDSS, pages 177–183, 2011.

[24] F-Secure. Another reason 99% of mobile malware targets an-
droids. https://safeandsavvy.f-secure.com/2017/02/15/another-reason-99-
percent-of-mobile-malware-targets-androids/, Jan. 2017.

11

http://www.91ssz.com
https://www.weibo.com/1947211342/ya3l4kf5u
https://www.weibo.com/1947211342/ya3l4kf5u
https://www.appannie.com/en/
http://www.capstone-engine.org
https://sites.google.com/site/ioschameleons/
https://sites.google.com/site/ioschameleons/
https://anvaka.github.io/common-words
https://anvaka.github.io/common-words
https://github.com/bang590/JSPatch
http://www.code4app.com/thread-14820-1-1.html
http://www.code4app.com/thread-14820-1-1.html
https://mart.coding.net/project/11325
https://mart.coding.net/project/11325
https://www.virustotal.com/en/about/credits/
https://www.virustotal.com/en/about/credits/
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
http://www.dongcoder.com/detail-678294.html
http://www.dongcoder.com/detail-678294.html
https://safeandsavvy.f-secure.com/2017/02/15/another-reason-99-percent-of-mobile-malware-targets-androids/
https://safeandsavvy.f-secure.com/2017/02/15/another-reason-99-percent-of-mobile-malware-targets-androids/

[25] flipsternip. Make money on android and ios! appkarma! https://www.
youtube.com/watch?v=T86EB874ZsQ, Apr. 2015.

[26] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna. Triggerscope: Towards detecting logic bombs in android
applications. In SP, pages 377–396. IEEE, 2016.

[27] Freelancer. Looking for developer for lottery chameleon app. https:
//www.freelancer.com/projects/php/app-edt-15321896/, Apr. 2017.

[28] Freelancer. We need universal applications on ios. https://www.freelancer.
com/projects/iphone/need-universal-application-ios-then/, Apr. 2017.

[29] fxsjy. Jieba chinese text segmentation. https://github.com/fxsjy/jieba, Jul.
2013.

[30] T. S. N. L. P. Group. Stanford topic modeling toolbox. https://nlp.stanford.
edu/software/tmt/tmt-0.4/.

[31] T. S. N. L. P. Group. Stanford word segmenter. https://nlp.stanford.edu/
software/segmenter.shtml, May 2006.

[32] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang. Supor:
Precise and scalable sensitive user input detection for android apps. In
USENIX Security, pages 977–992, 2015.

[33] A. Inc. itunes preview (app store). https://itunes.apple.com/genre/ios/
id36?mt=8, Jul. 2008.

[34] A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller, V. Shankar,
R. Bachwani, A. D. Joseph, and J. D. Tygar. Better malware ground
truth: Techniques for weighting anti-virus vendor labels. In AISec, pages
45–56. ACM, 2015.

[35] C. Kevin. A list of common spam words. https://emailmarketing.comm100.
com/email-marketing-ebook/spam-words.aspx, Jan. 2018.

[36] P. King. Estmusicplayer. https://github.com/Aufree/ESTMusicPlayer, Nov.
2015.

[37] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras. The dropper
effect: Insights into malware distribution with downloader graph analytics.
In CCS, pages 1118–1129. ACM, 2015.

[38] D. M. Lazer, M. A. Baum, Y. Benkler, A. J. Berinsky, K. M. Greenhill,
F. Menczer, M. J. Metzger, B. Nyhan, G. Pennycook, D. Rothschild, et al.
The science of fake news. Science, 359(6380):1094–1096, 2018.

[39] {Lee, Yeonjoon and Wang, Xueqiang}, K. Lee, X. Liao, X. Wang, T. Li,
and X. Mi. Understanding ios-based crowdturfing through hidden {UI}
analysis. In USENIX Security, pages 765–781, 2019.

[40] X. Liao, K. Yuan, X. Wang, Z. Pei, H. Yang, J. Chen, H. Duan, K. Du,
E. Alowaisheq, S. Alrwais, et al. Seeking nonsense, looking for trouble:
Efficient promotional-infection detection through semantic inconsistency
search. In SP, pages 707–723. IEEE, 2016.

[41] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang. Uipicker: User-
input privacy identification in mobile applications. In USENIX Security,
pages 993–1008, 2015.

[42] T. C. P. N. NETWORK. Apple removes 45,000 apps in china. http:
//www.asiaone.com/digital/apple-removes-45000-apps-china, Jun. 2017.

[43] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin. Dark hazard: Learning-
based, large-scale discovery of hidden sensitive operations in android
apps. In NDSS, 2017.

[44] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. Whyper: Towards
automating risk assessment of mobile applications. In USENIX Security,
pages 527–542, 2013.

[45] L. PreEmptive Solutions. Preemptive protection for ios - rename. https:
//github.com/preemptive/PPiOS-Rename, Mar. 2016.

[46] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen. Autocog:
Measuring the description-to-permission fidelity in android applications.
In CCS, pages 1354–1365. ACM, 2014.

[47] S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P. Ranganath,
H. Li, and N. Guevara. Experimental study with real-world data for
android app security analysis using machine learning. In ACSAC, pages
81–90. ACM, 2015.

[48] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, et al. Sok:(state of) the art
of war: Offensive techniques in binary analysis. In SP, pages 138–157.
IEEE, 2016.

[49] SimonLo. Hulumusic. https://github.com/SimonLo/HuluMusic, Apr.
2017.

[50] L. Stefanko. Multi-stage malware sneaks into google play.
https://www.welivesecurity.com/2017/11/15/multi-stage-malware-
sneaks-google-play/, Nov. 2017.

[51] A. Store. Making the most of your product page. https://developer.apple.
com/app-store/product-page/.

[52] F. Wei, S. Roy, X. Ou, et al. Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android
apps. In CCS, pages 1329–1341. ACM, 2014.

[53] Wikipedia. Red envelope. https://en.wikipedia.org/wiki/Red envelope,
Jan. 2018.

[54] Wikipedia. Word2vec. https://en.wikipedia.org/wiki/Word2vec, Feb. 2018.
[55] witmart. Buy covering ios apps for 30,000 cny. http://www.witmart.com/

cn/app-software/jobs/jobid 34788.html, Oct. 2017.
[56] C. Xiao. Pirated ios app store’s client successfully evaded apple ios code

review. https://unit42.paloaltonetworks.com/pirated-ios-app-stores-client-
successfully-evaded-apple-ios-code-review/, Feb. 2016.

[57] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using gui screenshots for
search and automation. In UIST’09, pages 183–192. ACM, 2009.

Yeonjoon Lee Yeonjoon Lee is an Assistant Pro-
fessor in the College of Computing of Hanyang
University. He received his B.S. degree from
Hanyang University in 2012 and the Ph.D. degree
in Security Informatics from Indiana University
Bloomington. His research interests include mo-
bile security, IoT security and network security.

Xueqiang Wang Xueqiang Wang is a Ph.D. can-
didate in the School of Informatics, Computing
and Engineering of Indiana University Bloom-
ington. He received his M.S. from Institute of
Information Engineering in 2015. His research
interests include mobile security, IoT security, and
network security.

Xiaojing Liao Xiaojing Liao is an Assistant Pro-
fessor in the School of Informatics, Computing
and Engineering of Indiana University Blooming-
ton. She received her B.S. and M.S. degree in the
School of Computer Science at Harbin Institute
of Technology in 2010 and 2012. She received
her Ph.D. in Electrical and Computer Engineer-
ing from Georgia Tech. Her research interests
include network security, smart grid networks
performance and privacy. She is a member of
IEEE.

XiaoFeng Wang XiaoFeng Wang is a James
H. Rudy Professor of Computer Science and
Engineering at Indiana University Bloomington.
His research focuses on system security and data
privacy with a specialization on security and pri-
vacy issues in mobile and cloud computing, and
privacy issues in dissemination and computation
of human genomic data.

12

https://www.youtube.com/watch?v=T86EB874ZsQ
https://www.youtube.com/watch?v=T86EB874ZsQ
https://www.freelancer.com/projects/php/app-edt-15321896/
https://www.freelancer.com/projects/php/app-edt-15321896/
https://www.freelancer.com/projects/iphone/need-universal-application-ios-then/
https://www.freelancer.com/projects/iphone/need-universal-application-ios-then/
https://github.com/fxsjy/jieba
https://nlp.stanford.edu/software/tmt/tmt-0.4/
https://nlp.stanford.edu/software/tmt/tmt-0.4/
https://nlp.stanford.edu/software/segmenter.shtml
https://nlp.stanford.edu/software/segmenter.shtml
https://itunes.apple.com/genre/ios/id36?mt=8
https://itunes.apple.com/genre/ios/id36?mt=8
https://emailmarketing.comm100.com/email-marketing-ebook/spam-words.aspx
https://emailmarketing.comm100.com/email-marketing-ebook/spam-words.aspx
https://github.com/Aufree/ESTMusicPlayer
http://www.asiaone.com/digital/apple-removes-45000-apps-china
http://www.asiaone.com/digital/apple-removes-45000-apps-china
https://github.com/preemptive/PPiOS-Rename
https://github.com/preemptive/PPiOS-Rename
https://github.com/SimonLo/HuluMusic
https://www.welivesecurity.com/2017/11/15/multi-stage-malware-sneaks-google-play/
https://www.welivesecurity.com/2017/11/15/multi-stage-malware-sneaks-google-play/
https://developer.apple.com/app-store/product-page/
https://developer.apple.com/app-store/product-page/
https://en.wikipedia.org/wiki/Red_envelope
https://en.wikipedia.org/wiki/Word2vec
http://www.witmart.com/cn/app-software/jobs/jobid_34788.html
http://www.witmart.com/cn/app-software/jobs/jobid_34788.html
https://unit42.paloaltonetworks.com/pirated-ios-app-stores-client-successfully-evaded-apple-ios-code-review/
https://unit42.paloaltonetworks.com/pirated-ios-app-stores-client-successfully-evaded-apple-ios-code-review/

	Introduction
	Background
	A Motivating Example
	Design and Implementation
	Overview
	Data Preparation
	Structure Miner
	Semantic Analyzer

	Evaluation
	Experiment Setup
	Effectiveness and Performance

	Measurement
	Landscape
	Understanding Chameleon Infiltration
	Case Studies

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	References
	Biographies
	Yeonjoon Lee
	Xueqiang Wang
	Xiaojing Liao
	XiaoFeng Wang

