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ABSTRACT
App-in-app is a new and trending mobile computing paradigm in
which native app-like software modules, called sub-apps, are hosted
by popular mobile apps such as Wechat, Alipay, Baidu, TikTok
and Chrome, to enrich the host app’s functionalities and to form
an “all-in-one app" ecosystem. Sub-apps access system resources
through the host, and their functionalities come close to regular
mobile apps (taking photos, recording voices, banking, shopping,
etc.). Less clear, however, is whether the host app, typically a third-
party app, is capable of securely managing sub-apps and their access
to system resources. In this paper, we report the first systematic
study on the resource management in app-in-app systems. Our
study reveals high-impact security flaws, which allow the adversary
to stealthily escalate privilege (e.g., accessing the camera, photo
gallery, microphone, etc.) or acquire sensitive data (e.g., location,
passwords of Amazon, Google, etc.). To understand the impacts
of those flaws, we developed an analysis tool that automatically
assesses 11 popular app-in-app platforms on both Android and iOS.
Our results brought to light the prevalence of the security flaws.
We further discuss the lessons learned and propose mitigation
strategies.

1 INTRODUCTION
A new mobile-computing paradigm, dubbed app-in-app, is gain-
ing popularity in the past years. Under this paradigm, a mobile
app, called host app or host, operates a set of sub-apps as its in-app
components. These sub-apps give users native app like experience
and enriched functionalities (e-commerce, banking, health, travel
management, food ordering, etc.), thereby increasing their “stick-
ness” to the host: one does not need to leave the app if it does
everything [93]. They are installed by the users from the host’s
sub-app store, just like Google Play and Apple app store, which
fosters an ecosystem around the host app. As a prominent example,
it is reported that Wechat, the 5th most-used app in the world [27],
has one million sub-apps in its sub-app store and 200 million daily
sub-app users [5, 6]. In the meantime, sub-app vendors also benefit
from the host’s large customer base. For example, YuXiaoge, an
e-commerce retailer is known to make more than 1.5 million USD
of monthly sales through its sub-app [28] in Wechat, which allows
it to access Wechat’s one billion users worldwide [25]. Another
example is Pinduoduo, a group-buying platform that has acquired
300 million users in three years from its wildly successful Wechat
sub-app [25, 29]. Nowadays, this app-in-app paradigm has been
supported by many popular apps such as Wechat, Alipay, TikTok,
Baidu, Chrome, Firefox, etc., with other major app vendors also
actively participating in these hosts’ ecosystems.
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New security risks in the app-in-app paradigm. An app-in-
app system is under the control of the host app, which allocates
resources to sub-apps, including system resources it acquires from
the OS. For this purpose, the host app acts like the OS, e.g., provid-
ing its own APIs (a.k.a., sub-app API ) to its sub-apps for resources
access. Also like the OS, the host app mediates sub-apps’ access to
security-critical resources (e.g., GPS location, microphone, camera,
Bluetooth, photos, etc.) with its own permission-based access con-
trol mechanism. Further, a sub-app’s interactions with the user go
through the host’s user interface (UI): usually the host creates a
dedicated (fullscreen) window for each sub-app. Even the lifecycle
of the sub-app is controlled by the host, which decides when it
should be closed if resources are in high demand.

What comes with the app-in-app systems are new security risks
inherent to the paradigm. Prior research on mobile permission
re-delegation attacks [56] (a.k.a., confused deputy) shows that a
privileged app (deputy) may leak OS resources to malicious apps
with the exposure of its internal functions (through unprotected
public interface) either unintentionally or deliberately (when the
deputy opts to not implement protection since it will not bear the
consequences of the attacks). For an app-in-app system, however,
the host is designed to mediate sub-apps’ access to sensitive system
resources (e.g., location, microphone, camera, photos, etc.) and
avoid the re-delegation risks. However, it is never clear whether a
third-party app – the host – is capable of properly managing the
OS resources. Indeed, this can be very difficult, since the host does
not have full information about resource management at the OS
level: for example, the full list of permissions required for resource
access has never been made public by mobile OS vendors, and is
very hard to obtain [35, 46].

Besides resources accessed through system APIs, user interface
(UI) also needs protection, whose improper management opens
avenues to phishing attacks [38, 49]. State-of-the-art defense against
mobile phishing [49, 58, 96] relies on identifying the foreground
app: if the user knows exactly which app she is interacting with, she
would not expose secrets to the unintended one. Such protection,
however, does not work under the app-in-app UI model: since a
sub-app is rendered in the host’s window, a malicious sub-app can
be hard to differentiate from the host and other sub-apps providing
security-critical services (e.g., e-commerce, banking, health, etc.).
With the importance of those potential security risks, little has been
done so far to understand whether the app-in-app paradigm has
been adequately protected.
Our study. In this paper, we report the first systematic security
analysis on app-in-app systems across Android and iOS. Our re-
search brought to light the fundamental conflicts between the rich,
native app-like functionalities expected from the sub-app, and the
fundamental lack of capabilities for a third-party app – the host –
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to securely mediate access to system resources it acquired. More
seriously, we found that the functionality- and user-oriented app-
in-app ecosystems actually undermine the security protection of
modern mobile OSes, by introducing new risks to their otherwise
secure permission-based resource control.

In particular, the hosts generally fail to provide sound security
policies and effective control to protect sensitive system resources
from unauthorized sub-apps. For example, Wi-Fi scan is guarded
by a dangerous permission (i.e., location) on Android and an enti-
tlement on iOS, because this capability can leak user location [37].
However, Wechat discloses it to sub-apps (on both OSes) without
proper authorization – a serious violation of permission protection
on user location. Similar problems are also discovered on other
resources managed by popular host apps, which allow the adver-
sary, through an unauthorized sub-app, to stealthily gain access to
microphone, location, camera, etc., in the absence of a user consent.
Fundamentally, the problem comes from a knowledge gap: the host
developer fundamentally lacks the OS level knowledge, and there-
fore is not in position to design sound sub-app level permission
policies that comply with the OS level resource protection. Bridg-
ing this knowledge gap presents new challenges to the design of
app-in-app systems, such as misleading developer documentations
and conflicting OS-level security policies between Android and iOS,
which have not been systematically studied before (Section 3.1).

Also our research shows that an app-in-app system undermines
the protection enforced by a mobile OS by rendering the state-of-
the-art UI deception defense ineffective (Section 3.2). We present
an attack vector that is inherent in the app-in-app UI model, which
introduces realistic security hazards during app-user interactions.
Exploiting the weakness, a malicious sub-app, leveraging its UI
embedded in its host’s window, can strategically impersonate the
host to get sensitive information from the user, such as account
passwords. Our research shows that leading host apps such as Safari
(on iOS), Chrome (on Android), Wechat and Alipay (on both OSes)
are all vulnerable, allowing a malicious sub-app to steal the user’s
passwords for Amazon, Google, various mobile wallets, etc.

Further, as mainstream app vendors participate in app-in-app
paradigm by releasing sub-apps that are functionality-equivalent
to their regular mobile apps [29] (e.g., e-commerce, banking, travel,
health, etc.), their (sub-)apps can no longer benefit from the protec-
tion offered by modern mobile OSes – which have been hardened
after years of open security research. Safeguarding sub-apps to-
day mostly relies on individual host vendors, who however fail to
demonstrate that they are up to this challenge: our study shows
that even leading host apps with more than 100 million downloads
on Google Play and Apple App Store (e.g., Wechat, Alipay, Tiktok)
expose new attack surfaces and exploitable weaknesses through
their app-in-app supports (Section 3).
Impacts. To understand the scope and magnitude of the newly
discovered security risks (called app-in-app flaws or APINA flaws
for short), we analyzed 11 most popular commodity app-in-app plat-
forms on both iOS and Android, including Wechat, Alipay, TikTok,
JinRiTouTiao, Chrome, Safari, etc. To enable systematic measure-
ment and analysis of these flaws on a large scale, we developed a
scanner called Apinat (short for App-in-app Threat Scanner), to

report whether a host app contains APINA flaws, leveraging a com-
bination of test case generation, dynamic analysis and lightweight
computer vision techniques.

Running Apinat on the popular platforms, we found significant
and broad impacts of APINA flaws (Section 4.3): every single app-
in-app system we studied is vulnerable and exploitable with serious
consequences (Table 4). More specifically, APINA flaws allow the
adversary (i.e., either a malicious sub-app or native app) to stealthily
acquire critical system capabilities (e.g., accessing camera, micro-
phone, connecting to arbitrary Wi-Fi access point, connecting the
phone to arbitrary Bluetooth device, etc.) without the user consent,
and steal users’ private data (e.g., location, account credentials of
Amazon and top banks, credit cards, mailing address, travel logs,
health statistics). We reported our findings to all affected vendors,
who acknowledged that what we found are real and significant.
Google,Wechat and Alipay all awarded us through their bug bounty
programs. The demos of our attacks are available [12].
Contributions. The contributions are outlined as follows:
•We conducted the first systematic security analysis on the app-
in-app paradigm and discovered a series of unexpected, security-
critical flaws. Our findings bring in new insights into the funda-
mental security limitations and challenges in designing this new
computing platform and ecosystem, and are invaluable to the en-
hancement of its security protection. Also, we believe that our
findings are just a tip of the iceberg, and will inspire the follow-up
research on this direction.
•We developed new techniques to detect APINA flaws and mea-
sure their pervasiveness and impacts in 11 real-world app-in-app
systems. We demonstrate that the APINA flaws are indeed preva-
lent, across both Android and iOS, with severe security and privacy
implications. We release the source code of our tool [12].
•We discuss mitigation strategies and the lessons learned for build-
ing a more secure app-in-app system.

2 MOBILE APP-IN-APP SYSTEMS
A unique feature of app-in-app paradigm is its sophisticated sub-
apps, which are designed to provide native-app experience [5]. As an
instance, Wechat has provided “mini-programs” since 2017, which
are essentially sub-apps hosted inside the Wechat app. Another
example of the app-in-app paradigm in our study is the mobile
browser supporting standaloneWebApp, sinceWebApp is designed
to act like regular, native app: aWeb App is launched from the home
screen, and takes a dedicated entire window (separated from the
browser window) just like a standalone, native app – as advocated
by Google and Apple [44, 78]. Using Web App, such as Pinterest, is
not like interacting with a webpage [4], but more like launching
the regular Pinterest mobile app, except that its whole window is
created by the browser, which is transparent to the users.

Table 1 shows 11 popular app-in-app ecosystems we studied:
besides Wechat, other host apps are also remarkably popular, e.g.,
Alipay has one billionmonthly active users and 120,000 sub-apps [9].
Also, high-profile retailers, app and service providers (e.g., Amazon,
Microsoft, Airbnb, Samsung, HSBC, JD.com, Starbucks, McDon-
ald’s) actively contribute to the trending app-in-app paradigm by
releasing sub-apps to these hosts.
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Table 1: Popular host apps and the amount of sub-apps avail-
able in the host apps.

Host App Functionality (of the host itself, except sub-apps) Number of
Sub-App

Number of
Downloads

WeChat Instant Messaging, Social Networking,
Social Media, VoIP, Mobile Wallet 1M+ 200M+

Alipay
Mobile Wallet, Finance/Investment Management,

Shopping, News, Social Networking,
Utility Bill Management, Travel

120,000+ 1B+

Chrome Web Browser N/A† 1B+
Safari Web Browser N/A† N/A†

TikTok Video Sharing, Instant Messaging,
Personal Blog, Game Center N/A† 500M+

JinRiTouTiao News Feeding, live streaming N/A† 1M+

QQ
Instant Messaging, Video/Audio Chatting,

File Transfer, Personal Blog,
Game Center, Mobile payment

N/A† 10M+

Firefox Web Browser N/A† 100M+
Opera Web Browser N/A† 100M +

Baidu Search engine, News, Short Videos,
Voice Recognition, Readings N/A† 230M+

DingTalk Address Book, Mobile Office Tool Box,
Video Conference 20,000 500K+

Total - 1M+ 2.6B+

†: Lack public information.

2.1 Architecture
To enable native-app experience for sub-apps, each host app pro-
vides a set of sub-app APIs for sub-apps to access diverse system
resources (such as the camera, microphone, Bluetooth, NFC, Con-
tacts, photos). Also, the sub-app is cross-platform: it is typically
developed in script languages (particularly JavaScript [20]) and
runs on both the Android and iOS version of its host app. These
features are fulfilled by the host app through a cross-platform run-
time, called sub-app runtime in this paper. Below, we summarize its
typical architecture, which we learned through reverse engineering
popular host apps (Table 1).

Figure 1 outlines a typical app-in-app architecture from the per-
spective of resource access. Specifically, the host app consists of a
sub-app layer, where all sub-apps live, and a sub-app runtime, where
a generic abstraction was provided for system and host app resource
access. Sub-app runtime bridges sub-app API calls (in JavaScript)
into the native layer (in Java on Android, and Objective-C [39]
or Swift [40] on iOS) of host apps. The native layer then enforces
home-grown permissions of the host app (a.k.a., sub-app permis-
sions), and either accesses host resources or calls corresponding
system APIs to access system resources.

Specifically, in the script layer, invoking a sub-app API (e.g.,
connectWiFi) will trigger an Encapsulation lib, which then calls a
native function (e.g., dispatcher.dispatch(’connectWiFi’)) to
bridge the control flow into native layer. Particularly, we found two
common bridge techniques adopted by host apps, WebView [79]
and React Native [55]. To use Webview, a host app leverages a
WebView API addJavascriptInterface(obj, ‘dispatcher’)
to expose a native object obj aliased ‘dispatcher’ to the script layer;
its dispatch function is then accessible in script layer, as mentioned
above. Given each sub-app API, the dispatch function invokes the
corresponding native-layer libraries to check sub-app permission
and access resources. To use the React Native bridge, the major
difference here is how to expose the native object to script layer:
dispatcher object’s class in the native layer, namely Dispatcher,
must inherit an Interface ReactPackage of React Native framework;

Figure 1: A typical app-in-app architecture

dispatcher object is then specified in a configuration file, and
exposed to the script layer by React Native framework [55].

2.2 Security Model in Resource Management
• Sub-app permission. The app-in-app system uses the traditional
permission label assignment model to protect sub-app APIs. In
particular, sub-app requests a list of sub-app permissions, which
govern the access to the sub-app APIs. If the sub-app APIs access
sensitive system resources (i.e., protected by dangerous [76] permis-
sions on Android or entitlements [17] on iOS1) or sensitive host app
resources (non-system resources under host app’s control, such as
user profile, ID, gender managed by Wechat), a host app enforces
sub-app permissions for calling the sub-app APIs. For example,
Wechat defines a sub-app permission named scope.record to pro-
tect its sub-app API wx.startRecord, which is used to record audio
using the phone’s microphone. Note that host apps typically do
not intend to protect less sensitive system resources, i.e., those
protected only by Android normal permissions or not protected by
OSes.
• Isolation. Each sub-app has its unique ID assigned by the host
app. Sub-app cannot access resources of the OS, host app, and other
native apps and sub-apps without going through an authorized
channel provided by the host. Each sub-app has a unique data
storage, managed by the host app.
• Sub-app vetting. Like traditional app stores, all sub-app stores
in our study also require a sub-app to be reviewed before being
published. The sub-app vetting process consists of risk assessment,
along with additional criteria, to determine whether a sub-app
violates user privacy or data security requirements. Examples of
the security requirements include any sub-app shall not request
or induce users to enter the host app’s user ID and passwords [30]
and user data collected via a sub-app may not be sold, transferred,
traded, or disclosed [51].

2.3 Comparison with Existing App
Encapsulation Systems

Similar to the app-in-app system, other approaches can also “encap-
sulate” an application to run in the execution environment provided
1iOS entitlements which confer security permissions and capabilities [41], are strictly
protected by Apple and must be explicitly declared and vetted [108].
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Table 2: Comparison with existing app encapsulation sys-
tems ( : Not Supported; : Partially Supported; : Fully Sup-
ported).
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Sub-app API ecosystem
for system resource access

† †

The host has rich functionalities
apart from hosting

Mandatory
sub-app destruction

†: supported by HTML5 API, which is standardized by W3C and thus much easier to
manage than sub-app API.

by another app. A prominent example is Android Plugin framework
(e.g., Parallel Space [23], DroidPlugin [15], and VirtualApp [26]),
an app virtualization technology through which a “host" app can
load other Android apps (called “plugin” apps) from their APK files
to run in the host’s own process [111, 112]. This is done through
wrapping the system APIs for invoking plug-in apps, which share
the host’s UID and permissions during their executions [99, 111].
Also mobile app sandboxing (e.g., Boxify [47], and NJAS [50]) is
another way to virtualize apps. The idea is to encapsulate untrusted
apps in a restricted execution environment within the context of
a trusted sandbox app, which provides an emulation layer to ab-
stract the underlying OS and interposes all interactions (e.g., sys-
tem calls, binder IPC) between the untrusted app and the OS [47].
Other app-encapsulation solutions include Browser extension2 (e.g.,
AdBlock [8], EditThisCookie [16]), where a small program cus-
tomizes a web browser with the support of HTML5 (for controlled
system-resource access) and extension APIs (for browser-resource
access) [13], and PhoneGap apps (or HTML5 based mobile apps),
where a middleware framework (e.g., PhoneGap [24], Cordova [11],
Ionic [19]) is used to allow the developer to create mobile apps
using web technologies [31, 86].

Table 2 compares the above solutions with the app-in-app system,
in terms of their security implications. As we can see here, unlike
the app virtualization based Plugin framework and app sandboxing,
the app-in-app platform builds up its own API ecosystem (i.e., sub-
app APIs) for sub-apps to access system resources, which entails
non-trivial efforts to define and maintain its security model, such as
the sub-app API permission policies. Such policies are standardized
for HTML5 APIs used by browser extensions [103], but are ad-hoc,
opaque and often inadequate for the sub-app APIs that are much
more powerful and access more sophisticated system resources
than HTML5, thereby opening new attack avenues (see Section 3.1
and Table 7 in Appendix). Furthermore, compared with other solu-
tions dedicated to application encapsulation, the app-in-app host
2Browser extension is different from the deprecated Browser Plugin architecture [14].
Browser Plugin is generally not considered as an encapsulation system since the plugins
are independent executables and their access to system resources are not encapsulated
by the browser.

has its own rich functionalities (e.g., mobile wallets, messaging,
see Table 1), which are often shared with the sub-apps. For exam-
ple, e-commerce sub-apps (e.g., Amazon, Pinduoduo) leverage the
host’s built-in wallet feature for convenient payment process (see
Section 3.2). In our study, we found that such interactions (between
the sub-app and the host app) actually exposes a new attack sur-
face (Section 3.2). Also, the upper limit on the number of sub-apps
that can run concurrently on an app-in-app platform is public and
fixed (8 in Chrome, 5 in Wechat, 4 in Alipay): whenever the limit
is reached, the host has to terminate a sub-app in order to launch
a new one. This feature, which does not exist in other systems,
can be abused for deception attack, as discovered in our research
(Section 3.3).

2.4 Adversary Model
We assume the host app is benign, which aims to provide a secure
environment to run sub-apps. On the victim’s Android or iOS de-
vices where at least one app-in-app system is used, we consider
an adversary with his malicious app3 or sub-app installed. Note
that, none of our attacks requires the victim to install both. In
Section 3, we show that such malware can successfully pass the
vetting of popular sub-app stores, Google Play, third-party app
stores, etc. The malware sample does not have system privilege and
in some of our attacks may need to ask for a set of common permis-
sions from the users (e.g., Android’s READ_EXTERNAL_STORAGE and
WRITE_EXTERNAL_STORAGE) depending on specific attacks. Such
permissions are extensively requested by popular apps such as
Facebook, Gmail, and Pinterest. Therefore, we believe that claiming
them by the malicious app will not arouse obvious suspicion.

3 DESIGN CHALLENGES AND PITFALLS
In this section, we report our security analysis on resource manage-
ment in app-in-app systems. Our research shows that all app-in-app
systems we studied, including Wechat, Alipay, TikTok, Chrome,
Safari, etc., are subject to various APINA flaws, leading to seri-
ous exposure of system resources and new deception attacks. More
specifically, the security analysis has been systematically performed
by assessing two general categories of resources, system resources
accessible through system APIs and user interfaces. For each re-
source, we looked at the security policies that should be in place,
the mechanism that enforces the policies and the user interactions
with security implications.

3.1 System Resource Exposure
Sub-apps access system resources through sub-appAPIs (Section 2.1).
However, for the host, as a third-party app, constructing sound sub-
app API permission policies that govern system resources entails
challenges that are unexpected before. As a result, sensitive system
resources are often unwittingly exposed to unauthorized sub-apps.
Escaped sub-app API. Sub-app APIs are protected by sub-app
permissions, which are supposed to be consistent with the permis-
sions required by the OS when using the relevant system APIs they
wrap. For example, since the OS requires permissions to use its

3In this paper, we use the term app and native app interchangeably. Also, although the
host app is a native app itself, the term app or native app in this paper always refers to
an app that is not a host app for ease of presentation.
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Figure 2: Misleading Android documentation

audio recording APIs (RECORD_AUDIO [72] permission on Android
and Microphone Usage [42] entitlement on iOS), the sub-app API
to record audio (e.g., wx.startRecord in Wechat) should also be
protected by a sub-app permission (e.g., by sub-app permission
scope.record in Wechat). However, in our study, we found the
inconsistency in permission requirement between sub-app API and
system API, indicating that the host fails to create the correct per-
mission policies that govern sub-app API for system resource access.
As a result, certain sub-app APIs, that wrap permission-protected
system APIs, are completely open to any sub-apps without requir-
ing a sub-app permission, exposing sensitive system resources. We
name such unprotected sub-app API escaped sub-app API , and the
problem System Resource Exposure.

An example discovered in our research is the unprotectedWechat
sub-app API wx.getWifiList that performs WiFi scan, a capa-
bility protected by the underlying OSes against user location leak,
e.g., through an entitlement Hotspot Helper on iOS and danger-
ous level location permissions (ACCESS_COARSE_LOCATION and
ACCESS_FINE_LOCATION) on Android. This exposes the WiFi scan
capability to sub-apps, leaking out user location to them. Note
that a high-profile host app (e.g., Wechat) is typically granted the
location permission and many other permissions due to its rich
functionalities (see Table 9 in Appendix). As a result, through the
delegation, the host makes to the sub-app, escaped sub-app API
effectively opens a door for the adversary to gain unauthorized ac-
cess to system resources. In addition to wx.getWifiList, we found
many other escaped APIs in popular app-in-app systems, affecting
diverse sensitive resources across iOS and Android (Section 4.3).

Looking into the possible root causes, we found that it is very
challenging for an app-in-app system to soundly define sub-app
API permission policies that comply with the OSes in governing sys-
tem resources, due to the incomplete knowledge about permission
checks that happen at related system APIs. Specifically, official API-
permission maps for both Android and iOS have never been made
public. Although several prior attempts [35, 45, 46, 56] have been
made to automatically map Android APIs to their required permis-
sions, we found that the prior results are incomplete (Section 4.3)
and highly likely to introduce escaped sub-app APIs if they are used
to design a sub-app permission system. Consider the above exam-
ple of WiFi scan: recent results [35, 46] (on Android API level 25)
report that a related Android API WifiManager.getScanResults
requires just a normal permission ACCESS_WIFI_STATE, but fail
to mention that dangerous permission, location, is also required
(required since Android API level 23 [80]). Further, Section 4.3 re-
ports more escaped sub-app APIs possibly caused by the incomplete
API-permission maps.

Such API-permission mapping information has also not been
well recorded by the developer documentation. We found that such
documentation can be misleading or confusing. Again let us use
Wi-Fi scan as an example: as shown in Figure 2, the Android

documentation [75] may introduce the misconception that declar-
ing Manifest.permission.CHANGE_WIFI_STATE is sufficient for
Wi-Fi scan. Similar misguidance also appears on the Android doc-
umentation for Bluetooth scan, etc., and has likely caused other
escaped sub-app APIs we found (Section 4.3).

Another observation of our study is that, since sub-app API
is designed to be cross-platform (Section 2.1), the effort to build
sub-app API permission policies that comply with all OSes has
been complicated by the inconsistency between Android and iOS
in resource protection. Consider Bluetooth scan as an example:
the Android API BluetoothLeScanner.startScan requires the
dangerous location permission, while iOS does not. Such a dis-
crepancy likely causes confusion in app-in-app design which is
typically built for both OSes with uniform security policies. When
this happens, we found that the app-in-app designer tends to leave
the related sub-app API unprotected. For example, the sub-app APIs
for Bluetooth scan are not protected in multiple host apps (e.g.,
wx.getBluetoothDevices in Wechat). Actually, the difference in
policy-level protection could result from an additional security
guard put in place by the OS, which is unaware to the app-in-app
designer. For example, combining together Signal Strength and
Device ID of nearby Bluetooth devices reveals geo-locations [37].
On Android the pair is returned together by the above Bluetooth
scan API BluetoothLeScanner.startScan, which thus needs a
permission check; on iOS, however, the pair has been partially ob-
fuscated (Device ID is randomized), and is thus unprotected. We
suspect that the inconsistency, as observed on capabilities/resources
Wi-Fi scan, Wi-Fi connect, iBeacon, etc. is likely responsible
for other escaped sub-app APIs we discovered (see Section 4.3).
Discussion. Android 6.0 (API level 23) started to use a runtime
permission model: a user grants permissions at the app’s runtime,
when permissions are requested (e.g., when the app launches or
when the user accesses a specific feature) [73]. In this scenario,
when an escaped sub-app API tries to silently access a resource,
the host may have not been granted a permission to access that
resource, thus a permission will be explicitly required. However,
the OS’ permission granting window will show to the user that
it is the host app, who requests the permission, not the sub-app.
This misleading request may lead to the wrongly inherited trust
associated with the hosts, and make users grant the permission
inappropriately. This is also the case on iOS when a permission
window pops up to confirm the host’s access to a resource.

Furthermore, Table 9 in Appendix lists all Android dangerous
permissions and iOS entitlements requested by the vulnerable hosts
right after launching. It shows that the hosts proactively request
necessary permissions/entitlements even before accessing any spe-
cific features, due to usability consideration [92]. Those capabilities
of the hosts will always be stealthily delegated to the sub-app via
escaped sub-app APIs, which present serious risks.
Attacks and vendor acknowledgements. We implemented an
attack sub-app which ran inWechat v6.7.3 to steal user’s location on
both Android and iOS. The attack sub-app utilized Wechat escaped
sub-app API wx.getWifiList to perform Wi-Fi scan and sniffer
the surrounding Wi-Fi access points. The scan results included sen-
sitive information, i.e., BSSID, Signal Strength and Device ID of
nearby Wi-Fi access points, which enabled to infer the geolocation
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(a) Real Prominent UI (b) Fake Prominent UI

Figure 3: Safari’s Prominent UI confusion on iOS

of a user [37]. This attack sub-app successfully passed the vetting
of Wechat sub-app store and ran on both iOS and Android versions
of Wechat. Note that, our attack sub-app has less than 200 lines of
code, which indicates that it is cost-effective for the adversary to
develop APINA flaws malware in the wild. Besides, we successfully
built attack sub-apps in other host apps, e.g., Alipay, DingTalk, etc.,
and reported the problems to all affected host-app vendors. They
all acknowledged the problem; in particular, Wechat and Alipay
awarded us through bug bounty programs for this flaw.

3.2 Sub-window Deception
Another unique app-in-app feature is the functionality-level inter-
actions between the host and sub-app. For this need, the host does
not fully isolate itself from sub-apps, which unwittingly introduces
new attack surfaces and high spoofing risks against host-app UI.
Browsers’ Prominent UI confusion. To bring a native app-like
experience, Safari on iOS and Chrome on Android open each sub-
app (i.e., Web App, Progressive Web App, or PWA) in an entire
dedicated window separate from the browser window just like a
native app [44, 78] – without any browser UI such as the address
bar. Web App is programmed with JavaScript and HTML, but must
meet certain standards [68]. With user confirmation, the browser
can install a Web App to the phone’s home screen (through an
APK [69] package created by Chrome, or a Web Clip [44] created
by Safari). Such Web App takes the full screen if “standalone" or
“fullscreen" is specified in its manifest file. EachWeb App is clearly
associated with specific Web domain when installed. When the user
navigates to out-of-scope URL (i.e., of different origin) in a Web
App, the browser displays a Prominent UI – a banner at the top of
the screen (Figure 3a) showing the origin and secure connection
status – due to the lack of address bar. According to Web App
documentation [67], users rely on such Prominent UI to be aware
when they navigate out of scope, an important security notice.

Based on a study [57], mobile phishing attacks tend to happen
when users become accustomed to familiar, repeated contexts. More
specifically, if users frequently encounter legitimate context, they
will become conditioned to reflexively respond to it. Here, the cur-
rent design of Web App conditions users to see the Prominent UI in
out-of-scope navigation, which we found poses a spoofable context.

(a) Authentic wallet UI (b) Bogus wallet UI

Figure 4: Mobile wallet UI confusion

Specifically, Web App is designed to embrace out-of-scope brows-
ing [104] and let users freely navigate to other Web domains for
services, such as login through Facebook/Google (a.k.a., SSO [107]),
payment through PayPal, etc. The problem is that, when a victim
user navigates out of scope, e.g., to Facebook login page, a mali-
cious Web App can actually navigate to an in-scope phishing page
imitating Facebook, showing a bogus Prominent UI (as if shown by
the browser) to misleadingly inform the victim that she is on a real
Facebook domain (Figure 3b). In this way, the malicious Web App
can collect victim users’ secrets such as Facebook passwords.

We call this problem Sub-window Deception – sub-window means
part of a window. Prior phishing attacks in browsers explored
how a webpage can go full screen and spoof the address bar [1,
2]; as another instance of mobile browser UI attacks, our attack
complements the prior understanding, by exploiting Prominent
UI – the counterpart of address bar in the context of native app-
like Web App. Note that, address bar differs from Prominent UI
in design: based on the Web specification [106], browsers “should
provide a means of exiting fullscreen that always works and advertise
this to the user" [106], so users can see the real address bar when
they want (although browsers may not implement this protection
properly [89]); Web App users, however, lack practical mechanisms
to verify the authenticity of Prominent UI today. This attack applies
to general Web App on both iOS and Android: we reported it to
W3C4, Apple, Google, Firefox, and Opera, which all acknowledged
the importance of the problem.
Mobile Wallet UI confusion. Wechat and Alipay both feature
mobile wallets, which can be leveraged by e-commerce sub-apps
to provide users a convenient payment process. Amazon sub-app,
for example, after a user clicks its “checkout with Wechat wal-
let” button, will invoke a sub-app API (e.g., wx.requestPayment
in Wechat) to trigger the host’s wallet; the host then reclaims a
central portion of the screen from the sub-app, to show its wallet
UI (highlighed in Figure 4a), for the user to enter her wallet pass-
word and finish the payment. Such a context can condition users
to reflexively provide wallet passwords at checkout, and therefore
presents a practical spoofing target. Specifically, when a victim user
clicks the “check out" button in a malicious e-commerce sub-app, it
can show a bogus wallet UI (Figure 4b) to collect the user’s wallet
password, instead of invoking the real wallet.

4We do not provide the link to our report for anonymization purpose
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(a) Real sub-app task (b) Bogus sub-app task

Figure 5: Dedicated task for every sub-app in Recents screen

Up to our knowledge, state-of-the-art mobile anti-phishing tech-
niques cannot identify our attacks: for example, [49, 58, 96] mainly
rely on identifying the app of the whole foreground window, so the
user would not expose secrets to the unintended app; this cannot
identify a sub-window at the sub-app level – whether it belongs to
a sub-app or the host app.

Our study shows that a bogus sub-window presents a practical
attack vector in app-in-app, since a window portion (sub-window)
can be used by both the sub- or host- app in accustomed contexts
without differentiation through clear identification. From a broader
sense, we believe the spoofing risk is also high if the OS shows
its pop-up atop an app (so malicious app can show a bogus one
when the OS does not); however, in sharp contrast, such pop-up
is not sub-window (but whole window), and known anti-phishing
techniques (e.g., [49]) to identify (the owner of) the whole window
can defeat it.
Attacks and vendor acknowledgements.We implemented PoC
attacks in Safari on iOS, Chrome on Android, and Wechat on both
OSes: in Safari and Chrome, our malicious Web App impersonates
Prominent UI to spoof Facebook login page; in Wechat, our mali-
cious sub-app mimics the wallet UI to steal wallet password (see
video demo online [12]). Our malicious sub-app passed the vetting
of Wechat’s sub-app store. Note that Web App does not have app
stores and can be installed after visiting its URL. In addition, we
reported the problems to all affected host vendors who all acknowl-
edged that the threats were practical and severe. Wechat and Alipay
awarded us through their bug bounty programs.

3.3 Sub-app Lifecycle Hijacking
As app vendors follow the app-in-app trend by releasing sub-apps,
it is unclear whether their users remain equally protected as before.
Unfortunately, our study shows that even highly credible host apps
cannot fully eliminate new attack surfaces incurred by app-in-app.
Recents screen takeover. The Recents screen (a.k.a., recent task list,
or recent apps) [64] is a system-owned UI of Android to list recently
accessed task (Figure 5a). In particular, each launched native app
will have a task in Recents screen; similarly, a host app creates a
separate task for every launched sub-app, which appears in Recents
screen. Limited by the OS, each host app can only create a fixed
number of tasks in Recents screen, pre-specified as activities in
its manifest file. In our research, we found that host apps all specify

a small magic number (e.g., 8 in Chrome, 5 in Wechat, 4 in Alipay,
3 in JinRiTouTiao) for the task limit.

When an additional sub-app will be opened after the task limit
is reached, the host app silently executes a mandatory recycling
process: closing the first opened sub-app to recycle its task for
launching the new one. The recycling process is transparent to
users for the possible purpose of not interrupting the user experi-
ence. Such a mandatory sub-app recycling mechanism introduces
a new risk: once the recycling is traceable by a malicious app,
i.e., the adversary knows which sub-app has been recycled and at
what time, it can stealthily insert a phishing task into the Recents
screen to imitate the silently recycled sub-app. For this purpose,
the adversary needs to acquire the information about a host’s task
recycling, which turns out to be feasible, due to the presence of
various information-leak avenues that can be hard to eliminate. In
our study we found a side channel that enables recycling track-
ing in multiple host apps. In particular, possibly due to the rich
functionalities of sub-apps, which require resource files (e.g., user
data, logs, icon and image texture), the host app creates a folder
in Android external storage [18] to cache sub-app resources. Such
external storage can be monitored by an Android native app to
track which sub-app is launched and at what time (by monitoring
sub-app icon which will be downloaded at launch, see PoC attack
below). Thereby, once the number of launched sub-apps reaches
the host’s task limit, the sub-app to recycle can be inferred. Hence,
a malicious native app can insert a bogus task in Recents screen
to mimic the recycled sub-app; at this point, the bogus task is the
only one in Recents screen that represents the target sub-app that’s
spoofed (Figure 5b).

This attack is a kind of mobile task hijacking attacks [52, 97].
Regarding its root cause, the mandatory sub-app recycling opens a
new attack surface for app-in-app systems, since it makes it possible
for malicious apps to track a sub-app’s lifecycle termination. Note
that, the attack surface becomes exploitable in the presence of side
channels, e.g., external storage, which itself is a relatively trivial
bug. Other side channels could also be used for the attack once they
arise (see discussion below). Eliminating this attack surface may
not be trivial in practice, since the maximum task number of a host
in Recents screen is not dynamically scalable (statically specified
in manifest) limited by the OS. Although the very recent Android
supports dynamic task, no host app we studied (Table 3) adopted
it, possibly for the purpose of supporting older Android versions,
given the notorious Android version fragmentation [74].
Attacks and vendor acknowledgements.We implemented PoC
attacks on Alipay andWechat, which cache sub-app resources in the
external storage and enable recycling tracking. Specifically, Alipay
stores the caches at /sdcard/alipay/multimedia/. When a sub-
app, such as Amazon, is launched, its icon will be downloaded to
it if not already there. Our malicious Android app with a common
permission WRITE_EXTERNAL_STORAGE can remove cached icons
periodically andmonitor when they reappear, to knowwhat specific
sub-app is launched and at what time. In our attack of Alipay, once
the malicious app infers that five sub-apps have been launched
(submit-app task limit of Alipay is 4), it will insert a bogus task in
Recents screen to mimic the first sub-app which is recycled. Once
the victim user enters the spoofing task through Recents screen,
it can lure the user to leak secrets such as passwords. Note that
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our malware successfully passed the vetting of popular app stores,
including Google Play. We reported the problem (demo online [12])
to Wechat and Alipay which both acknowledged the problem and
awarded us through bug bounties.
Discussion on other side channels. As mentioned earlier, other
side channels, once found, can also be used for impersonating the
recycled sub-app. Prior research [113] shows that the operations
of Android apps can be easily tracked through the Android pro-
cess file system (procfs). Although Android has been continuously
beefing up its privacy protection, until Android 9, still some global
statistics under procfs are exposed. Particularly, we found that the
TCP connection status, under /proc/net/tcp, can be accessed by
any app without permission on Android 9 and below. From the file,
we can see the IP addresses of all TCP connections on an Android
phone, which are labeled by randomly assigned User IDs. Interest-
ingly, we found that an invoked sub-app makes a sequence of TCP
connections and the endpoints of the connections (domains) can
uniquely fingerprint its initiation: e.g., Amazon sub-app connects to
4 unique endpoints with 8 consecutive HTTPS requests in the first
few seconds after it is launched. In our research, we sampled 8 high-
profile sub-apps in Wechat and identified the sequences of their
communication endpoints as observed when they are triggered (see
Table 8 in Appendix). Through this side channel, a malicious native
app is able to infer the launch of a specific sub-app, so it can wait
until it is terminated for task recycling (e.g., after 5 other sub-apps
are found to be started through the procfs, when the magic number
is 5) to create a task to impersonate the sub-app. Note that, the mali-
cious app can resolve the endpoint domains from IP addresses using
Android API Inetaddress.getCanonicalHostName [81] without
requiring any permission, which was implemented and confirmed
in our study.

Until April 2020, 84% of the Android devices are still running
Android 9 or earlier versions [33], and therefore are vulnerable to
our attack. On Android 10, which was released in September 2019,
the procfs used in our attack has been closed by SEAndroid [70, 83]
and thus the attack is ineffective. Seeking a more powerful attack
avenue is left to the future research.

4 APINA FLAWS IN THEWILD
In this section, we report a measurement study that reveals the
scope and magnitude of APINA flaws in the wild. The study is
made possible by an automatic analysis tool we built, called Apinat
(short for App-in-app Threat Scanner), which helped us identify
app-in-app hosts that are susceptible to APINA flaws.

4.1 Identifying System Resource Exposure
Design. Apinat aims to find System Resource Exposure flaws by
identifying escaped sub-app API . The idea is to find sub-app API
that is unprotected by sub-app permission, while its corresponding
system API is permission-protected. A naive idea is to call each
sub-app API and find out whether the OS checks the permissions of
the host app, e.g., by looking at permission pop-ups or system logs.
This does not work because the permission asked by the OS can be
related to the host app’s own rich functionalities, not the sub-app
API. To systematically find escaped sub-app API , our methodology
tracks the system API invocations triggered by a sub-app API via

a dynamic analysis (Step S1, S2), and then utilizes system API-
permission maps to derive required permissions of the sub-app
API (Step S3), which will be compared to the corresponding sub-
app permission. If a sub-app API is not protected by any sub-app
permission while its corresponding system APIs are guarded by the
Android dangerous permissions5 or iOS entitlements, an escaped
sub-app API is found (Step S4). Following we describe how this
design works and how it was implemented in our research on
Android. Since sub-app APIs are cross-platform, we were able to
extend all the findings made by our technique from Android to iOS,
by simply validating these findings on the Apple platform.
Step S1: generating test cases. To conduct a dynamic analysis, we
first need to generate test cases with valid arguments to invoke each
sub-app API without triggering exceptions. For each API, we target
that at least one invocation is successful. The argument types of
JavaScript APIs are either primitive or Object [21]. To produce test
cases for primitive arguments, we leveraged Mozilla’s funfuzz [22],
a JavaScript toolkit. ForObject arguments, we recursively generated
test cases leveraging funfuzz because an Object includes key/value
pairs: its key is primitive, and the value is either primitive or Object.
All test cases were then used by a sub-app we built to invoke sub-
app APIs. If all test cases for an API failed, we manually inspected
the API, to address the issues such as formatted inputs (e.g., UUID),
stateful calls (an API needs to be invoked before another), etc.
Step S2: tracking system API. As mentioned in Section 2.1, the
execution of a sub-app API enters the native layer of the host
through a dispatcher.dispatch function, and then its control
flow reaches system APIs (Figure 1). Therefore, Step S2 first iden-
tifies the dispatcher.dispatch function in the host app’s native
layer, then tracks its call graph to find the system APIs triggered
by the sub-app API call, as elaborated below.

(1) Find the dispatcher.dispatch function in the native layer. As
mentioned earlier, Webview and React Native are bridge techniques
to expose dispatcher.dispatch to JavaScript layer. Note that
though the object alias (dispatcher) and function name (dispatch)
vary across host apps, they can be obtained by inspecting function
invocations in Encapsulation lib (Figure 1), which is a preprocess-
ing step in our study. Note that, the Encapsulation lib usually can
be found in JavaScript files packaged in the host app (e.g., under
assets/ folder). So all we need is to identify the dispatcher object
in the native layer based on the obtained alias.

To this end, S2 implements an Xposed [7] (a framework to in-
strument Android app execution) module to hook Webview API
addJavascriptInterface(obj, alias) (that exposes Java object
to JavaScript through an alias) and inspect its arguments at run-
time: if the “alias" argument’s value matches the dispatcher alias
discovered, the “obj" is the dispatcher object that we are looking
for. The analysis of React Native bridge is slightly different: we
hook its API createNativeModules to get its Java objects exposed
to JavaScript; our Xposed module then calls each exposed object’s
getNamemethod to get its alias – if this alias matches the dispatcher
alias discovered, the object is what we are looking for.

5Host apps are typically third-party apps that cannot call privileged system APIs pro-
tected by “signature" or “signatureOrSystem" level permissions [65], or they typically
do not delegate the access to such APIs through sub-app APIs.
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(2) Track execution of the dispatcher.dispatch function. Our tool
then tracks the call graph of the dispatch function to find the called
system APIs – which are called to fulfill the sub-app API call. Specif-
ically, our Xposed module hooks dispatch function and Android
API, and inspects their respective call stack traces. However, we
found that dispatch’s thread sometimes does not call Android APIs
directly: it triggers additional thread to call Android APIs, likely
for not to block the dispatch thread. This introduces a challenge:
Xposed outputs the above two stack traces by threads – one stack
trace with Android API call and the other with dispatch function
call – but cannot correlate two threads if one triggers the other.
Therefore, we still cannot confirm that the Android APIs are in-
voked due to dispatch. Hence, we developed techniques to deal with
the multi-threading challenge.

In our study, we found that Handler, a typical multi-threading
mechanism of Android, is commonly used by dispatch’s thread to
trigger a new thread. Thus, we implemented our own thread corre-
lation technique based on the Handler mechanism in our Xposed
module. More specifically, in the Handlermechanism, a triggering
thread, that holds a handler instance, will submit a runnable to a
message queue via calling the handler.post(runnable) method.
Here, the runnable is an instance of Java Runnable [3], with code
in its run() method. Then the runnable is taken out of the queue
by another thread, which we name as the handler thread, and
gets executed in the handler thread. Hence, as checked in our
Xposed module, if the executed runnable in a handler thread is
the same instance with one submitted by a triggering thread, then
we correlate the two threads. Through such techniques, we found
Android APIs are indeed called in such handler thread following
the dispatch thread’s triggering – this confirms the Android API
call caused by the dispatcher.dispatch function.
Step S3: synthesizingAPI-permissionmapping. As mentioned
in Section 3.1, system API-permission mappings are incomplete,
which can lead to escaped sub-app APIs. How to derive a complete
mapping remains an open question in system security research
and program analysis. Here, our idea is to supplement recent map-
pings [35, 46] leveraging documentation analysis: we automatically
extract explicitly declared permissions for system APIs in the devel-
oper manuals, assuming that explicit specification at least reflects
intended protection of the OS with rare faults. Note that certain
portion of the documentation (Figure 2) can be misleading to hu-
man readers due to incomplete presentation, but we observed that
an exhaustive, machine-based search on the whole corpus of mobile
OSes (e.g., the entire documentation for all 2,497 SDK classes of An-
droid API level 27) can help us derive a significantly more complete
mapping than state-of-the-art mappings [35, 46] (see evaluation
below). For instance, after a full scan of Android WifiManager man-
ual [75], we were able to flag ACCESS_FINE_LOCATION as a required
permission for multiple Wi-Fi scan related APIs (see Figure 8 in
Appendix), which has never been included in state-of-the-art map-
pings [35, 46].

In our implementation, we developed a Web crawler to fetch
all manuals from Android developer portal [62] and extracted
the description for each public API. From the description, we ex-
tracted the declared permissions based on a few key observations:

if the description of an API does not contain a “permission" key-
word, it is very likely that the API does not explicitly require
permissions; otherwise, its description usually includes a “per-
mission" keyword and the exact permission string constants de-
fined in Android class android.Manifest.permission [77], such
as ACCESS_FINE_LOCATION. Based on such observation, we per-
formed a light-weight string matching to find explicit permission
requirement of Android APIs (we discuss the sophisticated, NLP-
based direction in Section 5).

Step S3 also derives a sub-app API-permission map: given its
relatively small size (i.e., 50 to 172 sub-app APIs in each host, com-
pared to 35,847 public Android APIs found by our Web crawler),
we extracted the map by searching “permission" related keywords
in sub-app developer manual and manually confirmed the result.
Step S4: reporting flaws. S4 reports an escaped sub-app API if it
is not protected by sub-app permission while its corresponding
Android API(s) is protected by dangerous permission(s). That is, a
System Resource Exposure flaw is found.

For iOS, however, a comprehensive detection is much more dif-
ficult than Android, especially because obtaining a system API-
entitlement mapping is much more challenging. First, we are not
aware of any work that has produced a mapping on iOS for us to
start with. Second, we observed that iOS documentation is not as
precise as Android in this regard, which describes required enti-
tlements for iOS classes but not for individual system API. To still
help us understand the impact of escaped sub-app API on iOS , we
extended our findings of escaped sub-app API from Android to iOS:
if its corresponding iOS API requires an entitlement, it is considered
to affect iOS as well. This was done by manually searching corre-
sponding iOS API for a given escaped sub-app API , and checking
whether any entitlement is asked when the iOS API is invoked in
an iOS app we built.
Evaluation. We evaluated the effectiveness and performance of our
analysis tool (source code released [12]) on a Google Pixel 2 phone
and iPhone 8 against 11 host apps. The evaluation was performed
on three Android versions (8.1, 9, 10, corresponding to API level 27,
28, 29) and two iOS versions (12, 13.4).
•Overall detection results.Apinat found 39 System Resource Exposure
flaws: all of them affect Android 8.1, 9 and 10; 13 of them affect
iOS 12 and 13.4. We manually validated that all discovered flaws
are true in two steps (1) confirming that the sub-app API requires
no sub-app permission through a testing sub-app; (2) confirming
that the corresponding system API(s) has permission protection
through a testing native app on Android and iOS.
• Evaluating individual steps. Step S1 generated test cases for all
927 sub-app APIs under test in less than one hour. All sub-app APIs
were successfully invoked at least once without exception on each
Android version. In this experiment, we did not measure the host’s
code coverage because the host includes implementation of its own
rich functionalities that are unrelated to sub-app API. Thus, it is not
meaningful to compute the percentage of covered host app code.

Step S2 took less than 30 seconds for each sub-app API, to report
its corresponding system APIs on each Android version. The num-
ber of system APIs (protected by dangerous permissions) hooked
by S2 is 111, 129, 145 on the three Android versions respectively.
To evaluate the correctness of our thread correlation, we created
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a test app which triggered new threads leveraging the Handler
mechanism. Our test showed that our tool correctly correlated the
triggering and triggered threads on each Android version.

Step S3 produced the API-permission mapping, including 94
public APIs protected by dangerous permissions at API level 27,
103 APIs at API level 28, and 119 at API level 29. This step took our
approach three hours to process the descriptions of 35,847, 42,302
and 44,323 public APIs on the three API versions respectively. To
validate the correctness of the mapping, we constructed a test app to
invoke all the APIs and verify the required permissions at runtime.
For all three Android versions, our permission mapping of all except
6 APIs are correct. Specifically, the mapping of 92 APIs out of 94
is correct (97.9% precision) at the API level 27. The two false cases
are unprotected APIs hasPermission and requestPermission in
class UsbManager [66]. At API 28, the mapping shows a precision
of 97.1%, with one new false case than what was found on API 27
(3 cases in total); API 29 shows a precision of 95%, with three new
cases than API 28 (6 cases in total). Figure 6 and 7 in Appendix
list all six false cases. Their descriptions are more complex and we
envision that a natural language processing (NLP) based approach
can further improve our precision (see discussion in Section 5).

To evaluate the coverage of our documentation analysis tool,
we randomly selected the documentation of 153 classes, 641 APIs
(out of 2,164 classes), and then manually reviewed and identified
52 API-permission mappings as the ground truth. Running on the
aforementioned documentation, our analysis tool shows a precision
of 100% and a recall of 100% to identify API-permission mapping
from the documentation.

We also compared the completeness of our mapping with recent
mappings [35, 46]. They collectively reported 50 public Android
APIs that require dangerous permissions on API level 25 (we were
not able to get results of newer Android from the authors); as a
significant improvement, our tool was able to find 91 APIs (82%
more) that require dangerous permissions on the same API version.
Discussion. Apinat may not find all escaped sub-app APIs. In par-
ticular, Step S3 cannot derive a complete mapping if the documen-
tation is incomplete [56] or too sophisticated to process; Apinat
only looks for system resource exposure by public system APIs, and
undocumented system APIs used by host apps may also lead to the
flaw but remain undetected. Also, Apinat falls short in analyzing
obfuscated host apps, e.g., that uses dynamic code loading, and
implementations in C/C++. Hence, Apinat did not scan Web App
APIs due to the extensive C/C++ implementation in browsers. In
addition, incorrect documentation (which we assume is rare, and,
indeed, our tool did not report any false escaped sub-app API ) might
lead to false alarms if not properly validated.

4.2 Finding UI Deception Flaws
Design. To find out the opportunities for Sub-window Deception
(Section 3.2) in a host app, Apinat looks for the app’s sensitive sub-
windows, which can be the targets of the attack. As discovered in
the wallet UI confusion (Figure 4b), the host’s sub-windows that
are likely to show up in the presence of a sub-app, tends to be those
that can be triggered through sub-app APIs. If such a sub-window
also contains sensitive information, our approach then reports it as
a potential target for Sub-window Deception.

Implementation. To detect such sub-windows, Apinat monitors
the change of the host UI in response to each sub-app API call
to identify the sub-window triggered by the API call, and then
determines whether it carries sensitive content. Specifically, our
approach first constructs a testing sub-app with an empty UI. Then,
it runs the sub-app API test cases in Section 4.1 to call each sub-app
API through the testing sub-app and further inspects the UI screen-
shots before and after the call for changes. This is done through a
pixel-to-pixel comparison of two screenshots. To capture the screen-
shots, we developed a screen projection service on Android using
the Media Projection [63] API. Also, our screenshot compari-
son was implemented using the OpenCV cv2.absdiff API [85].
For each sub-window identified, our approach continues to find
those associated with sensitive information. For this purpose, it
extracts strings from sub-window screenshots using the online
OCR service [34]. From the strings, Apinat further utilizes a list of
121 sensitive data keywords and the keyword pair list from recent
research [91] to recognize those carrying sensitive content. Note
that, like a mobile OS, an app-in-app system also provides a set of
sub-app APIs for sub-apps to dynamically generate UI components,
such as wx.createCanvasContext.draw() in Wechat. To control
false positives, Apinat omits such sub-app APIs, based on the API
category in the sub-app API documentation. As a result, Apinat suc-
cessfully detected 6 Sub-window Deception flaws (Section 4.3). For
iOS, we got the same result since sub-app APIs are across-platform:
the one triggers a sub-window on one OS also does that on the
other (see Section 2).
Evaluation. Apinat detected 5 sub-app APIs associated with the UI
deception flaw; we manually confirmed that all of them trigger sub-
windows with sensitive information. Also, all of them affect both
Android (version 8.1, 9, 10) and iOS (version 12, 13.4). Performance-
wise, the screenshot comparison and OCR analysis together took
less than 5 seconds on a desktop with Intel i5 2.7 GHz CPU and 8
GB memory.
Discussion. Soundly detecting whether a host app is susceptible
to Sub-app Lifecycle Hijacking (Section 3.3) is difficult, especially
because it entails detection of side-channel information leakage,
which can happen in many ways and is hard to capture in general.
To measure a lower bound of the pervasiveness of the problem,
we checked whether the hosts in our study (Table 1) had the same
information leakage and lifecycle design as reported in Section 3.3.
As a result, 3 host apps on Android (Wechat, Alipay, DingTalk) are
susceptible, which were all manually confirmed to be exploitable.

4.3 Measurement of Impact
Flaw landscape. With the help of Apinat, we analyzed 11 highly
popular host apps (Table 1) on Android and iOS, and found they
are all vulnerable to APINA flaws (Table 3). Altogether we found 52
APINA flaws, including 39 System Resource Exposure, 10 Sub-window
Deception, and 3 hosts vulnerable to Sub-app Lifecycle Hijacking.

For System Resource Exposure, in total, we uncover 39 escaped sub-
app APIs associated with 5 categories of exposed system resources,
4 Android dangerous permissions and 6 iOS entitlements. Table 5
shows the flaw number for each category of resources (the second
column), and illustrates 8 escaped sub-app APIs, with corresponding
Android permission(s) and iOS entitlement(s) ignored to enforce
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Table 3: Eleven vulnerable host apps on Android and iOS
(A: Alipay; B: Baidu; C: Chrome; D: DingTalk; F: Firefox;
J:JinRiTouTiao O: Opera; Q: QQ; S: Safari; T: TikTok W:
Wechat). "N/A" denotes the flaw does not apply to the OS.

Type of APINA Flaw iOS Android
System Resource Exposure A, D, J, Q, T, W A, D, J, Q, T, W
Sub-window Deception A, B, D, W, S, Q A, B, C, D, F, W, O, Q
Sub-app Lifecycle Hijacking N/A A, W, Q

on them . All 39 escaped sub-app APIs are listed in our released
dataset [12]. Also, Table 6 illustrates 6 Sub-window Deception in non-
browser hosts; additionally, all four browsers we studied (Chrome,
Safari, Firefox, Opera) are susceptible to the same Prominent UI
attack.
Resource comparison between Android and iOS. Although
finding the full API-entitlement mapping for iOS is hard, we ob-
served a few differences between Android and iOS in system re-
source protection.
• iOS is less affected than Android. Out of 39 escaped sub-app APIs,
13 are related to iOS, which appears to be less affected and harder
to be exploited. There are two reasons behind the observation, as
discovered in our study. First, certain iOS APIs return less informa-
tion than its Android counterparts (i.e., those related to Bluetooth,
see Section 3.1), and thus is less susceptible to privacy risk (location
leakage). Hence, all 27 Bluetooth related escaped sub-app APIs do
not affect iOS (see Table 5). Second, WiFi related escaped sub-app
APIs (see Table 5) are much harder to exploit on iOS, since Apple
has extra protection besides entitlement. Specifically, right before
the programmaticWiFi operation, an iOS appmust obtain the user’s
explicit consent: the app must instruct the user to manually open
the WiFi setting page in the Settings app and then return to the
iOS app [43] – an indicator of user intention for the app to operate
WiFi.
• iOS entitlement fails to communicate risks to the user. On Android,
when the permission ACCESS_FINE_LOCATION is used for protect-
ing the operation Wi-Fi scan, it indicates a risk that the WiFi
operation may leak location, a highly private data. On iOS, how-
ever, the entitlement for Wi-Fi scan, i.e., Hotspot Helper, fails
to communicate such a risk. Actually, to get this entitlement for an
iOS app, app developers must file a special written request, by justi-
fying that the app does not have malicious intention. Apple reviews
the request internally, and possibly assesses the risks of location
leakage behind the scene. However, the name of this entitlement
and its documentation we could find does not show that Wi-Fi
scan needs location protection on iOS. This may have been one
of the factors leading to escaped sub-app API wx.getWifiList (see
Table 5), which performs Wi-Fi scan without protection.
Attack consequences. The system resources exposed by escaped
sub-app API and the risks can be identified from the API names
and the permissions they violate (see Table 5). For example, unautho-
rized sub-apps can use escaped sub-appAPI wx.getRecorderManag-
er to record audio (violating Android’s RECORD_AUDIO permission).
We summarize the attack consequences in Table 4. Further, Sub-
window Deception leads to phishing on popular Web services (e.g.,
Facebook), mobile wallets, and sensitive host UIs. For example,
Wechat has a UI triggered by sub-app API (wx.addPhoneContact)

Table 4: Examples of APINA attack consequences

Flaw Type Consequences (what the adversary is able to do)

System
Resource
Exposure

record audio, operate camera,
infer victims’ geo-location (thus track users),

connect victim’s device to arbitrary Wi-Fi (thus manipulate
network traffic, perform man-in-the-middle (MITM), or phishing),

and steal sensitive QR code, etc.
Sub-window
Deception

steal account credentials on Facebook, Google, Amazon, etc.,
steal mobile wallet passwords, contacts, etc.

Sub-app
Lifecycle
Hijacking

steal money (payments in shopping sub-app),
steal personal secrets (e.g., answers to
security questions, health records, etc),

steal business documents (from a document processing
and management sub-app published by Microsoft),

steal account credentials of Amazon, ICBC,
CCB, HSBC (1st, 2nd, 7th largest banks in the world),

Airbnb, Weibo, Starbucks, McDonald’s, etc.

for users to enter contact information (Table 6); attacking this UI
may leak contacts, which are highly private. Last, Sub-app Lifecycle
Hijacking affects three hosts (Table 3), and the risks come from
imitating sub-apps supported by these hosts, such as sub-apps for
Amazon, health, banking, Airbnb, etc. (see Table 4).
Cases Studies. We discuss a few other problems we observed in
app-in-app ecosystem.
• Keeping up with the OS evolution. Sub-app API permission policy
should keep up as the OS always evolves: newer OS version often
introduces more strict protection against sensitive resources. For
example, since Android 10, an app that accesses location in the back-
ground needs an additional dangerous permission ACCESS_BACKGRO-
UND_LOCATION, in addition to the regular location permission [82].
This protects user location against illicit tracking. However, sub-
app API for accessing location in hosts TikTok and Alipay did not
keep up with such a new protection, thus leaving their users at risk.

As another example, for the WiFi and Bluetooth scan that can
leak location, Android 9 and 10 require ACCESS_FINE_LOCATION
permission, while Android 8.1 is less restrictive and ACCESS_COARSE_
LOCATION is sufficient (see Table 5). Note that Android uses the first
permission to control access to precise location (e.g., GPS data),
and uses the second one for coarse-grained positioning (with an
accuracy approximately at the level of a city block [10]). Interest-
ingly, all hosts we studied only define a general location sub-app
permission to govern location API (e.g., scope.userLocation in
Wechat), but do not differentiate the two levels of accuracy.
• Too many APIs for one permission. APIs of apparently different
functionalities should never be governed by the same permission.
However, in the host TikTok (an extremely popular short-video
sharing app, with more than 500million downloads on Google Play),
three sub-appAPIs tt.scanCode, tt.chooseImage, and tt.choos-
eVideo (for scanning QR code, accessing photos and videos) are
governed by the same permission scope.camera, and thus inade-
quately protected. For example, a malicious sub-app that is granted
permission by the user to scan QR code, also, behind the scene,
silently gets access to API tt.chooseImage that accesses user pho-
tos, posing a serious privacy risk.

5 LESSONS AND MITIGATION STRATEGY
Lessons learned. The most important lesson learnt from our re-
search is the caution one should take when building a third-party
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Table 5: Summary of System Resources Exposure flaws (N/A means the flaw does not affect the OS)

System
Resource
Exposed

#
of

Flaws
Example of Escaped

Sub-app API Dangerous Permission Android API Entitlement iOS Class

Microphone 1 Wechat:
wx.getRecorderManager RECORD_AUDIO media.MediaRecorder

CaptureRequest Microphone Usage AVAudioRecorder

Camera 3 Alipay: my.scan CAMERA CameraManager.open-
CameraCaptureRequest Camera Usage AVCaptureSession

Wi-Fi 4
WeChat:wx.getWifiList

ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION ‡

WifiManager.
getScanResults Hotspot Helper † NEHotspotHelper

JinRiTouTiao/TikTok:
tt.getConnectedWifi

ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION ‡

WifiManager.
getConnectionInfo Access WiFi Information † CNCopyCurrent-

NetworkInfo

Bluetooth 27

Alipay: my.startBluetooth
DevicesDiscovery

ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION ‡

BluetoothLe-
Scanner.startScan N/A N/ADingTalk:

dd.getBluetoothDevices
Alipay:

my.getBLEDeviceServices

iBeacon 4 Alipay: my.getBeacons
ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION ‡

BluetoothLe-
Scanner.startScan Location Usage CLBeaconRegion

†: Much harder to exploit on iOS due to the requirement of explicit user approval.
‡: Android 9 and 10 require ACCESS_FINE_LOCATION permission, while Android 8.1 requires ACCESS_FINE_LOCATION or ACCESS_COARSE_LOCATION.

Table 6: Examples of Sub-window Deception flaws

Host App Triggering Sub-App API Legitimate (and spoofable)
Functionality of the Sub-window

Alipay my.tradePay Request password of
Alipay mobile wallet

Baidu swan.requestPolymerPayment Request passwords of
multiple mobile wallets

DingTalk dd.pay Request password of
Alipay mobile wallet

Wechat
wx.addPhoneContact Enter new contacts

wx.requestPayment Request password of
Wechat mobile wallet

QQ new in-app message Display instant messages
and enter a reply

sub-ecosystem on top of the operating system. In such a case, the
third-party OS-like app strives to provide a secure, self-contained
environment. However, whether it undermines OS security and
brings in new risks to modern mobile applications, need to be eval-
uated to identify the security gap between the new sub-ecosystem
and the OSes. Our measurement study shows that popular host apps
are generally susceptible to APINA flaws, indicating that the app-in-
app system vendors today either fail to identify or are unprepared
for the new risks.

Fundamentally, APINA risks come from the limited app-level
capabilities the host app has in managing OS resources, lack of
OS-level support, and missing of sub-app API standard. Hence,
down the road, it will require non-trivial, joint efforts to fundamen-
tally eliminate APINA risks. More specifically, escaped sub-app API
shows that a third-party host fundamentally lacks the full OS-level
knowledge on system resource protection. While such knowledge
can come from different sources, e.g., program analysis on relevant
OS modules [35, 46], developer documentations, technical reports,
etc., each source only contributes a partial view. Hence, joint efforts
need to be made in the future to synthesize such knowledge. Our
study also brings to light that such efforts are by no means trivial
– even the two leading mobile OSes have apparently confusing,
conflicting security policies. Synthesizing such a knowledge base

will not only benefit the app-in-app paradigm, but also make the
OS’ security mechanism more transparent for thorough auditing.

Our findings also highlight that prior OS lessons cannot fully
eliminate new risks incurred by the new paradigm, which necessi-
tates thorough assessment regarding its new attack surfaces. For
example, a malicious sub-app, a sub-window, and a task in Recents
screen all come as new attack vectors that pose credible new threats
to users’ most sensitive credentials and privacy.
Mitigation strategy. Following we propose the short-term miti-
gation and discuss the long-term strategy.
• Escaped Sub-app API. Eliminating the risk requires the host to
have full OS-level knowledge about resource control (e.g., API-
permission mapping), which is difficult. In the meantime, our tool
Apinat together with our API-permission mapping (released on-
line [12]) can help host app vendors identify escaped sub-app APIs.
Note that, since Apinat can identify escaped sub-app API with its
ignored permissions with respect to specific OS version (see Sec-
tion 4.3), host vendors may leverage our tool to assess whether their
sub-app API permission policy is always compliant with newly re-
leased OS version, and thus keep up the pace.

Further, we envision two possible future directions that could
lead to more viable solutions. First, as demonstrated by our anal-
ysis tool Apinat, although it is hard for today’s program analy-
sis techniques to derive a complete system API-permission map-
ping [35, 46], we could significantly improve its accuracy and com-
prehensiveness through developer documentation analysis. Our
current documentation analysis is rather preliminary, but still effec-
tive, as demonstrated in our study (Section 4). Down the road, we
could develop natural language processing (NLP) based techniques
for deriving more complete knowledge about API permission poli-
cies. With the techniques, an analysis could cover a wider spectrum
of literature, including iOS documents, research papers, technical
reports, etc., which will help derive up-to-date knowledge about
resource-management policies.

Second, the app-in-app community should work together to
standardize sub-app APIs and their permission policies, as done
in the HTML5 community on HTML5 APIs. For the time being,
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different app-in-app vendors bring in their own APIs for accessing
a wide spectrum of systems resources (see our comparison between
sub-app API and HTML5 API in Table 7 in Appendix), often without
proper safeguard in place, not to mention any effort to standardize
the protection.
• Sub-window deception. The risk comes from the UI confusion,
whether a window portion in the sub-app window belongs to the
sub-app or the host (Figure 3b). To mitigate the risk, we envision a
higher degree of UI isolation between the sub-app and the host: the
sub-app’s window should always be separated from that of the host
and the host should never reclaim any window portion from the
sub-app‘s window. Regarding the Wallet UI confusion (Section 3.2),
for example, Wechat should display its wallet UI only in its own
window, and advertise to users that any UI component inside the
sub-app window belongs to the sub-app.

A question arises whether a malicious sub-app can fake a crash
and then show spoofing content in the sub-app window to resem-
ble the host. This can be mitigated through additional protection
supported by the host. Specifically, the host app could keep mon-
itoring the UI of its sub-apps (e.g., through PixelCopy API on
Android [71]) to detect whether a UI object in the sub-app is similar
to a sub-window or a security-sensitive UI object associated with
host app. For performance concern, the host app could utilize the
state-of-the-art object detection model (e.g., Fast Region-based Con-
volutional Network based model [61], and YOLO [32, 95]) for the
real-time security-sensitive UI object recognition: as reported in
prior research [95], Fast YOLO yields the performance of 155 frames
per second. Note that, the effectiveness, efficiency and deployment
feasibility of such an approach need to be carefully explored and
evaluated, which we leave for our future research.
• Sub-app lifecycle hijacking. To mitigate this risk, a short-term
defense is to place all sub-app resources in the phone’s internal
storage, so our current exploit (leveraging monitoring the phone’s
external storage) to track sub-app lifecyle termination (Section 3.3)
can be mitigated. However, it is always a concern that sub-apps
may deplete the limited space on a phone’s internal storage. A
long term solution needs to consider how to make the sub-app
tasks dynamically scalable, to ensure that the sub-app recycling is
no longer traceable and thus the attack surface is fundamentally
eliminated. This, nonetheless, calls for support from modern OSes
for the emerging app-in-app paradigm.

6 RELATEDWORK
As mentioned in Section 2, recent years witnessed several tech-
niques to support the functionality of app encapsulation (e.g., Plu-
gin frameworks, app sandboxing, browser extension, and PhoneGap
app, see Table 2). Accordingly, numerous studies have looked into
the flaws in these app encapsulation systems: considering the se-
curity analysis of Plugin frameworks, a set of flaws were revealed
[99, 111, 112], including no permission management and no isola-
tion of the virtualized apps. Compared with Plugin frameworks, the
app-in-app paradigm has a much stronger security model, and our
study investigates the design challenges and pitfalls in the security
mechanism. Meanwhile, the security and privacy implications of
browser extensions have been extensively studied [48, 54, 84, 98].

Furthermore, the current security studies on PhoneGap apps fo-
cus on the flaws of PhoneGap framework’s access control policy
[60, 90, 100, 101]. For example, Song et al. [101] revealed that the
bridges added by the framework to the browser are not correctly
protected by the same origin policy. Jin et al. [86] introduced mul-
tiple channels (e.g., barcode, SMS, file system, Contact) for code
injection attacks in PhoneGap apps. Different from these works, we
focus on the unique features of the app-in-app paradigm (Table 2),
and reveal multiple new attack surfaces, which have never been
studied before.

The closer to our study are the works of Web App and WebView
vulnerability assessment. Up to our knowledge, only one paper
[87] analyzed security issue of Web App, in which the security
and privacy risks on HTML5 features in PWA were investigated.
In our attack on Web App, we did not focus on HTML5 features
but a general UI isolation and management model in app-in-app
paradigm. Also, although WebView technique is used in some of
the app-in-app systems, in sharp contrast to the works on Webview
weaknesses [36, 60, 88, 102, 105, 109, 110], our study explores the
security implications and challenges for a third-party app tomanage
operating system resources. Another set of works related to our
study is the exploitation of mobile UI deception. Prior phishing
attacks [38, 49, 53, 57, 97] mislead victims about the foreground
app, aiming at information theft in spoofing apps. Corresponding
countermeasures [49, 58, 96] emphasize identifying the app of the
whole foreground window, and thus cannot thwart Sub-window
Deception due to the inability to identify sub-windows. Further,
another angle of UI deception is clickjacking [59, 94], which are
different from our mobile-phishing attacks.
7 CONCLUSION
In this paper, we present the first systematic security analysis on re-
source management in high-profile app-in-app systems. Our study
shows that such systems are susceptible to a set of serious security
flaws. Our measurement study further sheds light on their perva-
siveness in the real-world. Further, our study brings in new insights
into the fundamental security limitations of this new paradigm, and
further contributes to a better understanding of its mitigation strat-
egy, an important step towards building a more secure app-in-app
ecosystem.
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(a) MediaStore.setRequireOriginal

(b) WebSettings.setGeolocationEnabled

(c) Request.setDestinationUri

Figure 6: Descriptions of Android APIs that Apinat failed to
generate permission mapping (Part1).

(a) UsbManager.requestPermission

(b) UsbManager.hasPermission

(c) WifiManager.addNetworkSuggestions

Figure 7: Descriptions of Android APIs that Apinat failed to
generate permission mapping (Part2).
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(a) WifiManager.getScanResults

(b) WifiManager.getConfiguredNetworks

Figure 8: The identified documentation associated with AC-
CESS_FINE_LOCATION permission.

Table 7: Examples of system resources accessed by sub-app
APIs in real-world app-in-app systems, which aremissing in
standardized HTML5.

Capabilities/Resources # Related Sub-app API
Authentication/User Identification 4
Background Audio Playback 24
Bluetooth Scan 3
Contacts 3
Clipboard 8
iBeacon 5
Make Phone Call 4
mDns 10
Phone Number 2
NFC Read/Write 10
Wifi Scan 9
Total 82

Table 8: Examples of popular sub-apps in Wechat and corre-
sponding endpoint-request sequences. *𝑛 means 𝑛 continu-
ous requests.

Sub-app Catergory Endpoint-request sequence

Google Technology
nq2kp0q0.api.lncld.net

drawtogether.googleminiapps.cn
nq2kp0q0.api.lncld.net*2

SEPHORA Beauty

beacon-mp.tingyun.com
fp-it.fengkongcloud.com

api.sephora.cn*5
mp.sephora.cn

sensor.sephora.cn
experiment.appadhoc.com

ssl1.sephorastatic.cn
zhls.qq.com

img.sephorastatic.cn

Amazon Shopping

api-cslp-emt.amazon.cn
www.amazon.cn

images-cn.ssl-images-amazon.com*2
api-cslp-emt.amazon.cn*2

images-cn.ssl-images-amazon.com*2
miniapp.amazon.cn

Walmart Retailer

mapi.ghsmpwalmart.com
cdn.ghsmpwalmart.com*2

zhls.qq.com*2
btrace.qq.com

statistic.ghsmpwalmart.com*2

McDonald’s Catering

jice.fw4.me*4
api.miniapp.mcdonalds.com.cn*2

cdn.jaxcx.com
tracking.mcdonalds.com.cn*4
cdn.miniapp.mcdonalds.com.cn

KFC Catering

trackingprd.hwwt8.com
orders.kfc.com.cn

imgorder.kfc.com.cn*6
fp.hwwt8.com

Airbnb Travel

z1.muscache.cn
api.airbnb.cn*2

z1.muscache.cn*2
www.airbnb.cn
z1.muscache.cn
api.airbnb.cn*3

BMW Automotive

cdn.bmwwechat.cn
dcs.bmw.com.cn

cdn.bmwwechat.cn
applet.bmwwechat.cn
cdn.bmwwechat.cn*2

applet.bmwwechat.cn*3
cdn.bmwwechat.cn*3

Nike Shopping

analytics.nike.com*3
makecellapi.nike.com*24
insights.nike.com*22
unite.nike.com* 29
www.nike.com*4

Lofter Blog

hubble.netease.com*4
mini.lofter.com

sentry.yuedu.163.com
yaolu.yuedu.163.com

Mongo TV Streaming

0img.hitv.com*4
1img.hitv.com*4
2img.hitv.com*4
3img.hitv.com*4
4img.hitv.com*4

d-weixin-v0.log.mgtv.com*2
i5.hitv.com

http://mobileso.bz.mgtv.com
st.bz.mgtv.com

thirdpart.api.mgtv.com*2
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Table 10: Examples of popular sub-apps and corresponding
host apps

Sub-app Category Host App
Google Technology Wechat
Microsoft Technology Wechat
SEPHORA Beauty Wechat
Amazon Shopping Wechat
Dell Manufacturer Wechat
Walmart Retailer Chrome, Wechat
McDonald’s Catering Alipay, Wechat
KFC Catering Wechat
Airbnb Travel Wechat
GIORGIO ARMANI Luxury Wechat
Bookings Travel Alipay, Baidu, Wechat
Starbucks Catering Alipay, Wechat
HSBC Banking Alipay, Wechat, Chrome
Huawei Electronics Alipay, Wechat
Samsung Electronics Wechat
BMW Automotive Chrome, Wechat
ICBC Banking Wechat
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Table 9: Android dangerous permissions and iOS entitlements requested by vulnerable host apps when first launched, and
when the host apps‘ own functionalities are triggered.

Host App Android Permissions When Launched Other Android Permissions iOS Entitlements When Launched Other iOS Entitlements

Alipay

READ_PHONE_STATE
WRITE_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE

CAMERA
ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

RECORD_AUDIO
GET_ACCOUNTS
READ_CONTACTS
WRITE_CONTACTS

Push Notification
Camera
Location

Photo Library
Contacts

Microphone Usage

Baidu

READ_PHONE_STATE
WRITE_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE
ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

CAMERA
GET_ACCOUNTS
READ_CONTACTS
WRITE_CONTACTS
RECORD_AUDIO

Push Notification
Location

Camera
Microphone Usage
Photo Library

DingTalk
READ_PHONE_STATE

WRITE_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE

READ_CALENDAR
WRITE_CALENDAR

CAMERA
GET_ACCOUNTS
READ_CONTACTS
WRITE_CONTACTS

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

RECORD_AUDIO

Push Notification
Contacts

Calendars
Camera

Microphone Usage
Photo Library

Location

QQ
READ_PHONE_STATE

WRITE_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE

CAMERA
GET_ACCOUNTS
READ_CONTACTS
WRITE_CONTACTS

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

RECORD_AUDIO
READ_CALENDAR
WRITE_CALENDAR

Push Notification
Contacts

Camera
Microphone Usage
Photo Library

Location

Wechat
READ_PHONE_STATE

WRITE_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE

CAMERA
GET_ACCOUNTS
READ_CONTACTS
WRITE_CONTACTS

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

RECORD_AUDIO
BODY_SENSORS

Push Notification
Camera
Contacts

Montion & Fitness

Photo Library
Microphone Usage

Location
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