
Navigating the Privacy Compliance Maze:
Understanding Risks with Privacy-Configurable Mobile SDKs

Yifan Zhang1∗, Zhaojie Hu2∗, Xueqiang Wang2†
, Yuhui Hong1,

Yuhong Nan3, XiaoFeng Wang1, Jiatao Cheng3, and Luyi Xing1†

1Indiana University Bloomington, {yz113, yuhhong, xw7, luyixing}@indiana.edu
2University of Central Florida, {zhaojie.hu, xueqiang.wang}@ucf.edu

3Sun Yat-sen University, nanyh@mail.sysu.edu.cn, chengjt6@mail2.sysu.edu.cn

Abstract
The rise of privacy laws like GDPR and CCPA has made

privacy compliance a requirement for mobile apps. Yet,
achieving it is difficult due to the apps’ use of third-party
SDKs with opaque data practices. Recently, to assist apps
in complying with privacy laws, many leading third-party
SDKs have started providing privacy APIs for configuring
the SDK’s data practices. Nevertheless, the extent to which
such a paradigm, referred to as privacy-configurable SDKs (or
PICO SDKs), truly enhances app privacy compliance remains
unclear to the community.

This question can only be answered through a systematic
measurement study, which is nontrivial and requires in-depth
analysis of the implementation of privacy APIs in PICO SDKs,
as well as the way they are utilized, sometimes through a
“wrapper” SDK that encapsulates other SDKs. To address this
challenge, we developed PICOSCAN, a privacy risk analysis
framework targeting Android, one of the most common mobile
platforms. PICOSCAN automatically analyzes the code of both
apps and SDKs to detect practices that potentially invade user
privacy. Applying PICOSCAN to 65 most popular PICO SDKs
and over 48,000 Google Play apps, we uncovered significant
privacy risks in today’s Android ecosystem. A large number
of them fail to correctly utilize privacy APIs as prescribed,
and even when these APIs are used, they often do not align
with user privacy preferences. Moreover, our study reveals that
many wrapper SDKs do not accurately convey privacy config-
urations to the SDKs they encapsulate, resulting in compliance
risks. Our findings expose systematic failures in the design,
implementation, and usage of PICO SDKs, highlighting the
urgent need for more effective solutions to enhance the privacy
assurance of Android apps. We will open-source the framework
and make the data produced by this study publicly available.

1 Introduction
With the emergence of privacy laws and regulations such
as GDPR and CCPA, concerns have been shifted to their

∗The two lead authors contributed equally to this work.
†Corresponding authors: Xueqiang Wang, Luyi Xing

compliance, especially for today’s mobile apps. A key
challenge in mobile privacy compliance is that mobile SDKs’
data practices are often unclear to apps, yet privacy laws hold
app developers accountable [36, 68, 80, 83]. Recently, to help
apps comply with privacy laws and regulations, many SDKs
provide mechanisms, particularly privacy APIs, for apps to
configure the SDK’s data practices (e.g., on data collection,
sharing, or selling) to comply with privacy laws. For instance,
for compliance with the Children’s Online Privacy Protection
Rule (COPPA), AppLovin’s SDK [22], which is an ad network,
offers the privacy API setIsAgeRestrictedUser. Once
this API is invoked by an app, the SDK will refrain from
collecting and processing any data from the current (child)
user [15]. While different SDKs support various privacy APIs
for apps to configure their compliance with specific laws, such
a paradigm, dubbed privacy-configurable SDKs (or PICO
SDKs), has been implemented by a large portion of top SDKs
and is widely used in apps on the Android platform.

Emerging privacy risks with PICO SDKs. The PICO
SDKs are supposed to improve privacy assurance for Android
apps. However, our preliminary study reveals subtle privacy
compliance risks in (1) how apps use the privacy configuration
APIs (or capabilities), and (2) how PICO SDKs implement and
fulfill the expected compliance. Essentially, the PICO SDKs
and their adoption bring a variety of general and novel privacy
compliance risks, collectively called privacy-configuration
compliance risks or PICO risks in our research. While
observations of noncompliance related to SDKs have been
reported before [51, 71], to the best of our knowledge, there
has been no systematic, large-scale study on the PICO risks
to understand the fundamental causes of the problem.

Particularly, we found that configuring privacy compliance
through PICO SDK can be more complicated than expected.
An app often uses multiple PICO SDKs (e.g., for serving ads,
analytics, and social networks) and is supposed to properly
configure relevant privacy APIs of all these PICO SDKs. A
PICO SDK, such as the ads network SDK AppLovin, internally
wraps and uses ads from other ads network SDKs, such as
Google AdMob and Unity Ads, which are also PICO SDKs

with privacy APIs. These PICO SDKs wrapped by AppLovin
are transitive dependencies of the app and we call AppLovin
a PICO wrapper. The wrappers and the SDKs they wrap form
complicated delegation relations in privacy configurations:
once the app configures specific compliance requirements for
the wrapper (e.g., age restriction), the wrapper is supposed
to faithfully propagate the privacy configurations to all PICO
SDKs it encapsulates. This can easily go wrong, leading to
privacy risks. Specifically, in the absence of standards, not all
(wrapped) PICO SDKs support the same sets of regulations,
and for the same regulations, they may not even come with
the same levels of support. Privacy violations have actually
occurred, for example, when an app configures AppLovin
for GDPR compliance, while such a configuration cannot be
propagated to the wrapped SDK Google AdMob, due to the
latter’s partial support for GDPR. In the paper, we present
detailed case studies and measurements of PICO risks (§ 6),
together with nine different types of PICO risks (§ 4).
Detecting privacy risks with PICO SDKs. We developed
PICOSCAN, an automatic privacy risk analysis framework, to
detect PICO risks in real apps on Android, one of the most
common mobile platforms. This is based on a set of PICO pri-
vacy principles we summarized for different roles in the PICO
ecosystem, i.e., the host app, PICO SDK and PICO wrapper
(§ 3.3). PICOSCAN leverages a PICO usage inspector to ana-
lyze the use of PICO SDKs in the apps to determine whether the
use violates the app-related principles. It also utilizes a PICO
SDK inspector to check whether individual and wrapper PICO
SDK implementations uphold applicable privacy principles.
These two components were developed to mainly perform
static analysis, with supplemental dynamic analysis to support
PICO risk detection for specific PICO privacy principles (§ 4).
Measurement of PICO risks in the wild. To understand the
compliance risks associated with PICO SDKs in the wild, we
built a PICO SDK metadata database named PICO METADB.
This database comprises 65 of the most popular PICO SDKs
on the Android platform, covering three major categories: 43
ad SDKs, 20 analytics SDKs, and 2 social network SDKs. Run-
ning PICOSCAN on 48,305 Google Play apps (downloaded
in October, 2023), our measurement results indicate that de-
spite the enhanced privacy configurability, PICO SDKs and
their use in the wild are far from being compliant, and privacy
risks can occur at every step of SDK integration and be in-
troduced by every role in the PICO SDK ecosystem. Overall,
among 24,844 apps in our dataset that integrate PICO SDKs,
7,880 apps (31.7%) are found to contain at least one PICO
risk. Specifically, 31.5% apps fail to invoke privacy APIs in
the first place, leaving privacy configurations of PICO SDKs
unattended. The risk is substantial considering that over 43.1%
PICO SDKs include privacy-invading default configurations
that allow the collection and processing of user personal data.
Even for apps that invoke privacy APIs, they are likely to con-
figure the APIs in a way inconsistent with users’ preferences,
e.g., 259 apps either hard-code privacy APIs with data-enabling

values directly, or set privacy APIs in conflict with user pri-
vacy preferences. Further, we found that there are numerous
privacy risks even for the apps that perfectly configure privacy
APIs, due to the erroneous implementations in PICO SDKs
and PICO wrappers. For example, 16 PICO SDKs that cover
14,869 apps have ambiguous consent configurations such that
they still collect user personal data even when privacy APIs
are invoked to decline the consent. Things become even more
complicated for PICO wrapper: 12 PICO wrappers (54.5%
out of 22) are found to not relay privacy configurations to the
PICO SDKs they encapsulate.

These findings shed new light on PICO SDKs, leading to
better understanding about their privacy assurance. First, with
the modularization of app development using closed-source
components from diverse parties, developers require enhanced
tooling, including privacy-configurable SDKs, to maintain
consistent privacy promises across all app components. How-
ever, this study demonstrates that this goal may not be easily
achieved solely relying on configurability. Inconsistent privacy
configurations may arise from various development flaws (e.g.,
missing or erroneous configurations), and unfulfilled respon-
sibilities by PICO wrappers (e.g., broken relay). Second, the
design and use pattern of PICO SDKs tend to expose app users
to privacy risks. Third, misimplementation and misinterpreta-
tion are common in PICO SDKs, possibly due to the absence of
systematic review and proper standards. Based on our findings,
we provide suggestions to key stakeholders, such as developers
of apps and PICO SDKs, as well as policy makers and law en-
forcement agencies, with the hope of helping end-users obtain
genuine privacy assurance when using Android apps (§ 7).

Contributions. We summarize the contributions as follows:

• We present a systematic study of privacy risks for the use
and implementation of privacy-configurable SDKs (PICO
SDK) on Android, and identified a range of general, novel
privacy compliance risks, collectively called PICO risks.

• We developed PICOSCAN, a compliance risk analysis
framework to automatically identify PICO risks in Android
apps and PICO SDKs. We will fully release the source code.

• We performed a large-scale study of PICO risk with over 48
thousand Google Play apps and 65 popular PICO SDKs. This
reveals that PICO SDKs, though created for privacy compli-
ance, often fail to provide expected privacy assurance.

2 Background
Privacy configuration capabilities supported by third-
party SDKs. The mobile SDK ecosystem has evolved signif-
icantly, with many SDKs now offering dedicated “advanced
privacy settings” documents (such as [29]) to assist app devel-
opers in achieving privacy compliance. These documents often
contain three types of information: legal and privacy disclo-
sure, app-level privacy configurations, and user-level privacy
configurations. Legal and privacy disclosure outlines privacy
policies describing how an SDK processes and shares infor-

mation, along with methods for end users to exercise privacy
rights (e.g., through data subject access request). App-level
privacy configurations enable app developers to customize
SDK usage and functionality mostly from the server side (e.g.,
via SDK dashboard), such as specifying data points for an ana-
lytics SDK. These configurations apply to all end-users of an
app. User-level privacy configurations enable app developers
to customize privacy exposure for each end-user. This study
focuses on user-level privacy configurations.
Privacy Configurable (PICO) SDKs. To support user-level
configurations, third-party SDKs may offer a set of predefined
privacy APIs. We refer to such SDKs as privacy-configurable
SDKs (PICO SDKs). The privacy APIs of PICO SDKs may
control various data practices, such as data collection, sharing,
and selling, in compliance with privacy laws (e.g., GDPR).
When using a PICO SDK, an app often invokes its initialization
API to configure global SDK options. For example, an ads
SDK initializes the ads unit ID before requesting ads from
backend ad networks. PICO SDK privacy APIs are typically
invoked alongside the SDK initialization APIs to ensure that
privacy configurations are picked up early on by SDKs.

3 Overview of PICO SDKs
3.1 Status Quo of PICO SDKs
Landscape of PICO SDKs. Privacy APIs of PICO SDKs
aim to help apps fulfill requirements of a range of privacy
laws, regulations, and industry standards, such as GDPR [26],
COPPA [25], US states’ consumer privacy acts [27, 46, 75, 76],
China’s Personal Information Protection Law (PIPL) [30], and
CARU Advertising Guidelines [24]. We conducted a survey
to understand the privacy laws supported by popular Android
SDKs. Specifically, we gathered a list of 203 most popular
SDKs (ranked by AppBrain [4], a service providing Android
market statistics) including 137 Ads SDKs, 41 Analytics
SDKs, and 25 Social Network SDKs. We focus on the three
SDK categories since they were known to involve privacy
practices [65,67,86]. We asked two security researchers to find
API documents for the popular SDKs, and then cross check
and combine their results. In total, we found API documents
for 91 of the 203 SDKs. From the documents, we searched
privacy APIs based on keywords including “privacy”,
“compliance”, “regulations” and names of specific laws.
The most commonly supported laws are GDPR (61 SDKs),
CCPA (39 SDKs), and COPPA (34 SDKs), spanning a total of
65 PICO SDKs. We provide a detailed list of privacy laws and
regulations along with the number of SDKs that offer privacy
APIs to ensure compliance online [17].
Scope of research. Based on the survey, our study focuses
on the support of three laws (GDPR, CCPA, COPPA) by the
65 PICO SDKs (see PICO METADB in Section 4.4). We study
how effectively their privacy APIs support privacy compliance
and whether apps have used them properly to achieve expected
compliance goals. Notably, although each privacy law defines

a range of privacy-related requirements, we specifically focus
on the following requirements for each law, which are most
commonly supported by the privacy APIs. We documented
all 191 privacy APIs in a database (§ 4.4) and have released
them at [17].
• GDPR compliance with consent requirements. Based on
GDPR, PICO SDKs (as data controllers) should establish
a legal basis for processing personal data, in most cases by
obtaining users’ consent. Hence, many PICO SDKs have pro-
vided privacy APIs with parameters that allow app developers
to specify users’ consent status, thereby enabling the PICO
SDKs to administer private data processing according to the
consent status. An example is Vungle [79], an ad network SDK
which offers an API setGDPRStatus. By passing in a false
parameter value, an app that integrates Vungle can instruct
Vungle to avoid collecting a range of personal data restricted
by GDPR, such as Android ID and advertising ID.
• CCPA compliance with the right to opt-out. Under CCPA,
PICO SDKs may not have to obtain explicit user consent for
data collection (although businesses must provide clear and
conspicuous privacy notice). Rather, CCPA requires that end
users who are California residents be able to opt-out of data
sharing and selling from businesses. To fulfill such a pri-
vacy right, PICO SDKs commonly provide a privacy API for
apps to specify end users’ choices of “opt-in” or “opt-out”,
based on which the PICO SDKs restrict the sharing and trad-
ing of user data. For example, the Vungle SDK has an API
setCCPAStatus to capture users’ “opt-out” status.
• COPPA compliance and protection for children users.
COPPA limits the collection and use of children’s personal
data, except with explicit and verifiable consent from parents.
Other laws such as GDPR and CCPA also have corresponding
restrictions for processing children’s personal data. For compli-
ance, a most common practice we observed from PICO SDKs
is to provide a privacy API that allows apps specify whether the
current user is under age restriction (being a child). The PICO
SDKs will then refrain from collecting data from the child
users. For example, the Vungle SDK provides a privacy API
(setCOPPAStatus) that takes a boolean parameter to indicate
whether the current app user is a child or not.

3.2 Motivating Example
We show real examples of PICO risks in Figure 1.
CallApp [60]1 is a popular app that has over 100 mil-
lion downloads on Google Play. It offers attractive security
features for users, such as detecting caller identity, and
blocking spams. The app, for maximized monetization,
implemented in-app ads bidding that selectively displays
ads from multiple ads networks using their SDKs, such
as Google AdMob, AppLovin, and Facebook Audience
Network. Offerings of these ads SDKs include showing

1The app is subject to all three privacy laws. It is available to users in the
EU and CA. It also collects users’ date of birth and permits children to use it.

personalized ads based on users’ personal data (e.g., user and
device identifiers, and demographic information, etc.). Most
of the ads SDKs are PICO SDKs, providing privacy APIs for
apps to configure them in accordance with applicable privacy
laws, such that the apps as a whole can be compliant. Upon
analyzing the CallApp app, we found that both the in-app use
and internal implementations of PICO SDKs are complicated,
resulting in several types of subtle privacy compliance risks in
Android apps that were unknown, or at least less known before.

Figure 1: PICO SDKs in the CallApp

First, the app intends to be GDPR-compliant by calling
AppLovin SDK’s privacy API setHasUserConsent with
an argument of either true or false, depending on the user
choice. AppLovin itself will not collect or use personal data
for delivering personalized ads without user consent (GDPR
compliance). However, the AppLovin SDK not only delivers
ads from its own ads network, but also internally wraps and
bids ads from other ads SDKs, such as IronSource, Vungle,
Google AdMob, and Unity Ads, etc. These SDKs wrapped by
AppLovin are transitive dependencies of the app and we call
AppLovin a wrapper SDK or PICO wrapper. The expectation
is that, once the app urges a PICO wrapper like AppLovin
for GDPR-compliance, it should propagate the compliance
requirement to all ads SDKs it internally uses (by calling their
privacy APIs for GDPR). We find that the expectation fails to
be fulfilled for key challenges: (1) Not all wrapped ads SDKs
support compliance configurations evenly. Google AdMob,
for example, partially supports GDPR configuration: after a
PICO wrapper passes along “not consent” to AdMob’s privacy
API, AdMob will not deliver personalized ads but will always
collect user data including device/user identifiers [1,2]. Failing
to account for the different levels of support for the same law
among PICO SDKs results in compliance risks for the app. (2)
Not all PICO SDKs used by a PICO wrapper support the same
laws. For example, the Yandex SDK and Kidoz SDK have not
supported privacy configurations for CCPA, and both of them
can be used by the wrapper AppLovin.

Second, with many PICO SDKs used in an app, their host
app or PICO wrapper might not configure compliance APIs
of all PICO SDKs, or configure them in a correct manner.
Ogury, for example, is an ads SDK supporting COPPA
configuration. However, AppLovin does not call Ogury’s
COPPA API applyChildPrivacy, although AppLovin did
call COPPA configuration APIs of all other ads SDKs it
wrapped. Also, for CCPA compliance, when the user is a
California resident, the app is supposed to invoke CCPA

APIs in PICO SDKs to communicate the user’s opt-out status
for data sharing/sale. Although the app uses the Facebook
Audience Network (SDK) to deliver ads, it uses a hard-coded
“opt-in” option when configuring Facebook SDK’s CCPA
API setDataProcessingOptions, posing a violation to
users who choose “opt-out”.

Further, although many PICO SDKs feature privacy APIs
that support multiple laws, their default configurations
(without privacy API calls by the app) do not comply with
privacy laws. For example, the InMobi SDK [28] by default
does not comply with COPPA unless the app calls the
setIsAgeRestricted API with an argument value true.

3.3 PICO Privacy Principles
We cannot evaluate privacy compliance risks without specific
privacy principles tailored for PICO SDKs. This section, based
on the motivating example (§ 3.2), summarizes a set of such
principles for different roles in the PICO ecosystem, i.e., the
host app, PICO SDK and PICO wrapper.
Privacy principles for apps using PICO SDKs. Privacy APIs
in PICO SDKs are designed to meet the key privacy objective
of returning privacy control to end users (in alignment with the
expectations reported in prior studies [42, 51, 64, 73]). Hence,
it is crucial that apps integrating PICO SDKs configure the
privacy APIs correctly and effectively based on the actual
privacy preferences of end users.

Principle #1 (Complete, User-controlled Privacy Config-
uration): Apps should ensure complete, correct privacy
configurations of all PICO SDKs in accordance with user
preferences.

Privacy principles for PICO SDKs. Similar to the principle
of “secure by default” [49], which requires automatic enabling
of security measures without user intervention, the principle of
“privacy by default” has become common sense among privacy
practitioners [37,52,58] and is also part of privacy laws [44,48].

Principle #2 (Privacy by Default): PICO SDKs should have
default configurations that protect user privacy.

Individual PICO SDKs offer privacy APIs for enabling apps
using them to manage PICO SDK privacy practices. Hence,
it is natural to mandate that privacy APIs to effectively fulfill
all promised privacy compliance without ambiguity, akin to
the “complete mediation” security principle by Saltzer and
Schroeder [72].

Principle #3 (Nonambiguous, Fulfilled Privacy Compli-
ance): PICO SDKs should fulfill all promised privacy com-
pliance once relevant privacy APIs are configured; the
promise (for the compliance effect of privacy API configu-
rations) should be nonambiguous.

Privacy principles for PICO wrappers. As demonstrated in
§ 3.2, when using PICO wrappers (one that encapsulates other
PICO SDKs), the underlying PICO SDKs are not exposed to

apps directly. Instead, their privacy APIs are configured by the
PICO wrappers, similar to the delegation design pattern [56].
Therefore, it is the responsibility of the PICO wrappers to
properly propagate (or forward) privacy configurations of the
app to all internal PICO SDKs.

Notably, a PICO wrapper itself is usually a PICO SDK by
providing privacy compliance APIs (e.g., AppLovin in Fig-
ure 1) and thus should follow principles of PICO SDKs.

Principle #4 (Complete Privacy Delegation): PICO wrap-
pers should fully propagate app’s compliance configura-
tions to all internal PICO SDKs in use.

Discussion. The principles are not direct adoption of prior
general principles, and they are contextualized to PICO SDKs.
Consequently, the principles will guide the identification of
PICO risks in real apps and SDKs (§ 4), although they may not
be exhaustive. For example, given that data practices extend
into PICO SDK backends, it becomes necessary to establish
privacy principles that apply to these backends. We leave
further exploration of those principles for future research.

4 Analyzing PICO Risks
PICO risks occur when apps, PICO SDKs, or PICO wrappers
violate the above privacy principles (§ 3.3). In this section,
we introduce PICOSCAN, an automatic analysis framework to
detect PICO risks.
Overview. Figure 2 shows the overview of PICOSCAN,
including the techniques and tools used in it. PICOSCAN
takes Android apps as input and identifies PICO risks in two
aspects: (1) whether and how the apps use PICO SDKs, and (2)
how PICO SDKs and PICO wrappers implement their privacy
APIs to meet the expected privacy compliance, with two main
components, i.e., PICO usage inspector (PUI) and PICO SDK
inspector (PSI), respectively.

PUI first identifies the usage of PICO SDKs in the apps
through static analysis, which involves searching for package
names of PICO SDKs and invocations of their privacy APIs.
This is enabled by a PICO SDK metadata database (PICO
METADB) that we built from the 203 most popular mobile
SDKs listed on AppBrain [4]. The database contains various
useful information for the analysis (as we will detail in § 4.4),
such as the package names of PICO SDKs, API signatures, etc.
For each privacy API invocation found in the apps, PUI further
identifies whether the invocation is made by the app code or by
a PICO wrapper. In the case of the former, PUI applies app-
specific principles (Principle #1) to detect privacy risks (§ 3.3)
related to app code invoking the privacy API. For the latter,
PICOSCAN leverages PSI to detect privacy risks based on
wrapper-specific principles (Principle #4). PSI further inspects
the implementation behind the privacy APIs of PICO SDKs and
identifies privacy risks based on PICO SDK related principles
(Principle #2 and #3). Note that PSI analyzes the PICO SDKs
and PICO wrappers that are already compiled into the apps as
an alternative to analyzing separate SDKs, since some SDKs

are not publicly available, e.g., Amazon mobile ads SDK [21]
is invitation-only.

Directly applying high-level principles in code-level
detection is difficult. Thus, we developed a set of more specific,
fine-grained technical patterns of PICO risks, called PICO
Violation Patterns (PVPs), corresponding to each principle
(Table 1). PUI and PSI scan for the occurrences of the PVPs
in the app code, the code of PICO SDKs and PICO wrapper
hosted in the apps, and report them as PICO risks. PICOSCAN
is mainly built on static analysis and is supplemented by
dynamic analysis for the scan of certain PVPs. For example,
under Principle #2, to identify the default compliance status
of PICO SDKs (e.g., true or false for age-restricted data
collection), we leverage static analysis to identify specific
variables that store the compliance value and then use dynamic
analysis to find the exact default value (detailed in § 4.2.2).
Figure 2 outlines the static and dynamic analysis techniques
and tools adopted for different PVPs. We will elaborate on the
choice of these techniques in the latter part of this section.

Table 1: PICO Violation Patterns (PVPs)

Role Privacy Principle PVP

App
#1: Complete, user-controlled
privacy configuration

#1: Missing configuration
#2: Configuration disregarding or incon-

sistent with user privacy preferences
#3: Erroneous configuration

PICO
SDK

#2: Privacy by default #4: Privacy-invading by default

#3: Nonambiguous, fulfilled
privacy compliance

#5: Ambiguous consent configuration
#6: Ineffective configuration

PICO
Wrapper

#4: Complete privacy
delegation

#7: Uneven privacy support
#8: Broken privacy delegation
#9: Conditional propagation

4.1 PICO Usage Inspector (PUI)

4.1.1 Identifying PICO Usage from Apps

To determine whether an app uses PICO SDKs, including
whether privacy APIs are invoked and whether they are invoked
by first-party code (app code) or third-party code (PICO wrap-
pers), PUI builds a global call graph for the app and traverses
all the edges to identify reachable methods that match PICO
SDK initialization APIs, as defined in the PICO METADB. It
then determines the parties using the PICO SDKs by compar-
ing the caller of the initialization APIs to the package names
of the main app or any other SDKs. The identification of PICO
wrappers is slightly difficult, SDKs often lack clear disclosure
about whether they are wrappers for other SDKs. In this study,
we identify PICO wrappers by uncovering inter-SDK connec-
tions on an app’s call graph. Specifically, for each discovered
PICO SDK initialization API on the call graph, we explore the
subgraph rooted in this API to locate the initialization APIs of
another SDK. This relationship, where the initialization API
of one SDK leads to that of another, is a clear indicator that
the former SDK functions as a wrapper for the latter SDK.

Figure 2: Overview of PICOSCAN

4.1.2 Patterns of PICO Risks Caused by Apps

Under the privacy principles governing apps (Principle #1),
we focus on three PVPs whose presence in the first-party code
indicates risks associated with the app’s use of privacy APIs
(or configuration capabilities) of PICO SDKs. In general, apps
using PICO SDKs are expected to configure the privacy APIs
of PICO SDKs correctly, adhering to (1) the API definition and
programming requirements, and (2) users’ privacy preferences
typically collected through app UIs, such as whether they
consent to data collection (see Figure 7 in the Appendix for
an example). We elaborate on the PVPs as follows.
Missing configurations (PVP #1). Apps using a PICO
SDK but failing to configure the privacy compliance of the
SDK by invoking its privacy APIs indicate a PICO risk.
An app often uses multiple PICO SDKs but may not con-
figure all of them. An example is the “Copy My Data”
(com.mediamushroom.copymydata) app [59], which lever-
ages the IronSource SDK to show ads but does not invoke any
of the IronSource privacy APIs.
Configurations disregarding or inconsistent with user pri-
vacy preferences (PVP #2). Apps are expected to capture user
privacy preferences and communicate them to PICO SDKs
by properly invoking the PICO SDKs’ privacy APIs. How-
ever, they might fail to capture user privacy preferences or,
if they do, they may fail to use the proper parameter values
when invoking the privacy APIs. A special situation within
this pattern is when an app uses hard-coded parameter val-
ues (e.g., consent: true) to configure privacy APIs – an
issue happened in many apps. Concerning COPPA compli-
ance, for example, the “SuperLozzi” (com.ltlk.z7) app, a
play-and-earn app with over one million downloads on Google
Play, collects the user’s date of birth. However, the app calls
AppLovin’s COPPA API setIsAgeRestrictedUser with a
hard-coded parameter value of “false”, which disables Ap-
pLovin’s COPPA compliance even when the user is a child
(see measurements in § 6.2).
Erroneous configurations (PVP #3). Even if apps configure
the necessary privacy APIs with the correct parameters that re-

flect user preferences, their configurations may not effectively
achieve the desired compliance. This happens when the use of
privacy APIs fails to meet the programming requirements spec-
ified for using these APIs. For example, the “Solitaire King”
(com.solitaire.king.card.creative.wuliu) app incor-
porates the PICO SDK AppLovin to display ads and config-
ures multiple SDK privacy APIs related to CCPA, GDPR, and
COPPA. However, AppLovin requires its initialization func-
tion, initializeSdk, to be invoked after configuring its pri-
vacy APIs. Unfortunately, this requirement was not followed by
many apps, rendering their privacy configurations ineffective.

4.1.3 Detecting PICO Risks Caused by Apps

To detect missing configurations (PVP #1), PUI traverses the
apps’ call graphs to find out whether the apps initialize and
use a PICO SDK but do not call any of their privacy APIs.

For PVP #2, we detect the inconsistencies between pri-
vacy configurations and the user’s privacy preferences us-
ing dynamic analysis. Specifically, PUI launches the apps
under analysis, exercises their UIs, and utilizes accessibil-
ity service (AS) APIs [20] to monitor the rendered app
UIs. PUI identifies privacy consent dialogs that request
user consent for data collection and usage (Figure 7 in the
Appendix). This is done by matching a set of common
privacy-related keywords in the texts of consent dialogs,
i.e., via regex matching “ˆ.*(?:privacy policy|collect
your|i agree|your consent).*$”. PUI leverages AS
APIs to automatically click the button on consent dialogs
to decline the consent request, by matching keywords such
as “no”, “decline”, “cancel”, “not now” or “disagree”.
Meanwhile, PUI instruments and monitors runtime param-
eter values of PICO SDK privacy APIs, in particular those
indicating “true” or “false” for user consent, and “opt-in”
or “opt-out” for data sharing and sale. Since the consent re-
quest has been declined, runtime values indicating a true” for
user consent or opt-in” represent privacy risks related to PVP
#2. PUI uses Frida [8] for monitoring runtime values. In case
that privacy consent dialogs are not observed, PUI performs

constant propagation on the interprocedural control-flow graph
(ICFG) of the apps to determine whether the parameters of
privacy APIs are constants (i.e., hard-coded).

Under PVP #3, PUI checks whether invoking individual
privacy APIs must occur before or after invoking other APIs
of the PICO SDKs. In our study, the ordering requirements
were extracted from SDK documents and recorded in the PICO
METADB (14 privacy APIs from eight PICO SDKs require
specific orders, see Appendix 9). Using the PICO METADB,
PUI checks the app code and API calls along the control flows
to identify misordered API invocations.

4.2 PICO SDK Inspector (PSI) for PICO SDKs
PSI analyzes individual PICO SDKs to check violations to
related principles (principles #2 and #3 in § 3.3), focusing
specifically on three PVPs as elaborated below.

4.2.1 Patterns of PICO Risks Caused by PICO SDKs

Privacy-invading by default (PVP #4). The PICO Principle
#2 requires that individual PICO SDKs come with a default
configuration in compliance with related privacy regulations.
However, this is not true for many PICO SDKs. Take, for ex-
ample, the SDK of InMobi [28], a mobile marketing platform
specializing in personalized ads. The InMobi SDK will stop
collecting certain personal information (such as advertising
ID) and notify its server to comply with COPPA for the current
user only after the host app calls the setIsAgeRestricted
API with a true parameter value. If the above API is not called,
InMobi defaults to assuming that all app users are adults, to
whom COPPA does not apply, and thus allows for the collection
of personal data for user profiling and serving personalized ads.
Privacy-invasive default configurations like these are found
in many popular PICO SDKs (see measurements in § 6.3).
Ambiguous consent configuration (PVP #5). At the core
of many privacy regulations is a requirement for user consent
before processing personal data. For example, GDPR requires
that data controllers (apps or SDK providers) must obtain user
consent for the collection and use of personal data, including
the use for serving personalized ads [26]. Under this require-
ment, the requestConsentInfoUpdate API of AdMob is
used to help apps collect user consent “to use your personal
data for personalized ads” (by showing a consent dialog
developed by the SDK, Figure 6), and apply the user consent
status for the SDK’s operation. While not all PICO SDKs
come with built-in consent dialogs, they commonly provide
APIs for apps to specify the user’s consent (true or false),
such as for personalized ads [39]. However, the intended
compliance effects of the consent status can be ambiguous: for
configurations of consent: false, it is unclear whether the
SDKs will not collect user personal data, or they will still col-
lect user data but just do not use the data for specific purposes
such as serving personalized ads. Our study of real PICO
SDKs showed that such an ambiguity is indeed underlined by

different compliance effects among PICO SDKs, resulting in
privacy risks: for example, the AdMob SDK always collects
user identifiers such as adid and ip address regardless of the
consent status configured by the API; in contrast, Kochava
will disable the data collection being more compliant.
Ineffective configuration (PVP #6). When apps correctly
configure privacy APIs, the PICO SDKs are expected to
achieve the compliance goals. Problems arise when the PICO
SDKs have implementation mistakes that render privacy APIs
ineffective. For example, the MyTarget SDK offers a GDPR
API setUserConsent to support the configuration of user
consent for data collection. Behind the API, the user consent
status is passed along and stored in an SDK internal variable
isConsent. In the SDK implementation, every collection of
device identifiers, such as Google and Huawei ad IDs, occurs
after inspecting the variable. Such a variable (referred to as
IPSVs in PICOSCAN’s detection, § 4.2.2), essentially records
the configured consent status, which is important information
governing the SDK’s privacy practices. However, in the
MyTarget SDK implementation, the isConsent variable can
be modified by other unexpected program paths, specifically
from the SDK’s CCPA API setCcpaUserConsent. Any con-
sent status configured for CCPA will overwrite that of GDPR,
silently rendering the GDPR configuration ineffective. This
overwriting causes problems in cases where the apps integrat-
ing the SDKs need to ensure compliance with both GDPR and
CCPA, e.g., when an app must protect users who are California
residents while the app itself operates as an EU-based business.

4.2.2 Detecting PICO Risks Caused by PICO SDKs

Detecting default privacy-invading configurations (PVP
#4). To assess whether the privacy configurations of a PICO
SDK are privacy-invading by default, we developed a method
in PSI to model the implementation of the PICO SDK’s
configurations. Specifically, our observation is that once a
privacy API is invoked with certain parameters (called privacy
parameters), a PICO SDK usually stores the values of the
parameters (e.g., whether the user is a child) as internal states
in local variables, such as class or instance fields. We refer to
such variables storing privacy parameter values as internal
privacy state variables or IPSVs. Further privacy practices of
the PICO SDK, such as invocations of system APIs to collect
personal data, will be governed by checking the IPSV values.
In the InMobi SDK, for example, the data flow behind its
COPPA API setIsAgeRestricted shows that the privacy
parameter isAgeRestricted is eventually stored in an IPSV,
i.e., <com.inmobi.media.ea: Boolean c>. In multiple
SDK functions that attempt to collect user personal data, it first
checks the IPSV to determine whether the collection should
proceed. Notably, while the privacy parameter can be stored
in various locations, including in shared preferences [31] for
persistence, it is often loaded into the IPSV for the SDK to
easily access it in different functions.

Based on the above observation, PSI first performs static
taint analysis on the apps to identify the IPSVs corresponding
to the SDK’s privacy parameters. This analysis is then
complemented by dynamic analysis to identify the runtime
values of these IPSVs using Frida [8]. If the runtime values of
the IPSVs match the values enabling data collection, sharing
or selling as recorded in the PICO METADB, PSI reports a
PICO risk corresponding to PVP #4. More specifically, to
identify IPSVs, we use privacy APIs’ parameters as sources
and find program variables to which the parameter values
are propagated (within the SDK code). Considering that the
values may be propagated to some intermediate variables,
PSI filters out those with different types from the privacy
parameters and those local variables internal to a method; PSI
specifically retains variables used in a condition check that
acts as a guard for user personal data collection.
Identifying ambiguous consents (PVP #5). To detect PVP
#5, PSI identifies the collection of personal data in the SDK
code even after configuring consent: false in the invoca-
tion of privacy APIs. The first step uses static analysis: PSI
identifies code locations that access personal data. This is done
by checking invocations of a list of system APIs (compiled
from prior work [70,87]) that access device and user data (e.g.,
device identifiers, advertising identifiers, and location). Similar
to prior work [40], the static analysis also finds out the program
paths in the SDK that transmit the user data to the Internet. Next,
PSI runs the app and uses consent: false to configure the
privacy APIs of PICO SDKs. This is done using dynamic instru-
mentation that manipulates related privacy parameters upon the
app’s invocation of privacy APIs. PSI reports privacy risks if it
finds that the program paths that collect and transmit user data
are executed at runtime (by inspecting call stack traces), even
under consent: false configurations of the privacy APIs.
Identifying ineffective configurations (PVP #6). The pres-
ence of multiple program paths manipulating common IPSVs
related to privacy APIs is an indicator of potentially ineffec-
tive configurations. Therefore, we detect them by checking
whether other public APIs of a PICO SDK can cause changes
to the IPSVs of any of its privacy APIs. For this purpose, we
extract the set of IPSVs, SIPSV , for each privacy API of a PICO
SDK. Next, we perform static taint analysis to collect all inter-
nal variables affected by other public APIs of the same PICO
SDK, i.e., Sv. We cross-compare the SIPSV and Sv to identify
whether the IPSVs of the privacy API are manipulated by other
program paths. Using this method, we can detect ineffective
configurations in other 8 PICO SDKs besides MyTarget, such
as Appodeal, and BidMachine (see measurements in §6.3).

4.3 PICO SDK Inspector for PICO wrapper
The PICO wrapper SDKs are special PICO SDKs that provide
privacy APIs to apps and are expected to fully and correctly
propagate apps’ privacy configurations to their wrapped PICO
SDKs. This requirement is instrumental considering that the
wrapped PICO SDKs are transitive dependencies of the apps,

which are often unknown and inaccessible for app developers
to configure. Under the Principle #4, PICOSCAN focuses on
three patterns of violations related to PICO wrappers.

4.3.1 Patterns of PICO Risks Caused by PICO wrappers

Uneven privacy support (PVP #7). In the absence of stan-
dards for PICO SDKs, individual PICO SDKs may support dif-
ferent sets of laws and regulations, and for the same regulations,
they may not even come with the same levels of support. For
example, PICO wrappers Appodeal [38] and AppLovin [47]
provided privacy APIs for GDPR compliance. Meanwhile, they
both wrapped Meta Audience Network [7], SDK of another ads
network, to help serve ads. Notably, Meta Audience Network
has not provided privacy APIs to configure GDPR compliance.
This can directly lead to privacy risks with GDPR in real apps.
For example, when the app com.solutions.class11dkg
configures Appodeal with “consent: false” for data
collection based on the user’s privacy preference, Appodeal
cannot propagate the configuration to Meta Audience Network,
which actually collects user data and serve ads in the app
regardless of user’s consent, posing a risk.
Broken privacy delegation (PVP #8). Even when the PICO
wrapper uses an individual PICO SDK that has aligned
privacy law support, it is possible that the PICO wrapper
fails to fully propagate the app’s privacy configurations to
the corresponding APIs of the individual PICO SDK. For
example, AppLovin (PICO wrapper) internally uses the
Facebook Audience Network (PICO SDK) for serving ads.
The AppLovin SDK has a CCPA API setDoNotSell, that
enables app users to opt out of data sharing/sale using a true
parameter. However, the AppLovin SDK does not use such
a parameter or related information to invoke the Facebook
CCPA API AdSettings.setDataProcessingOptions,
leading to a privacy risk.
Conditional propagation (PVP #9). A variant of the
broken delegation is the presence of extra conditions im-
posed by the wrapper that blocks propagation of privacy
configurations. An example is the PICO wrapper Ad-
most and its wrapped SDK Unity Ads. Both SDKs have a
GDPR related API to configure user consent for data col-
lection, i.e., AdMostConfiguration.setUserConsent, and
MetaData.set respectively. Based on user choices, when the
host app configures Admost with the user’s consent status for
collecting personal data, Admost will only conditionally prop-
agate the consent status to Unity Ads. When Admost considers
the user’s IP address is not within EU countries (thus may
not be subject to GDPR), it will configure Unity Ads with a
“consent: true”. This happens even if (1) the user does not
consent to data collection or (2) the app intends to configure the
PICO wrapper not to collect user data. Such a design pattern
is problematic: (1) it can violate the app’s compliance expec-
tation and privacy goal; (2) using IP addresses to determine
whether the user is subject to GDPR is not reliable [6, 12].

Further, such a practice violates Unity Ads’ privacy goals for
users: Unity Ads noted that “Consent extends beyond GDPR
and should be applied in any region” [77].

4.3.2 Detecting PICO Risks Caused by PICO wrappers

PUI detects PVP #7 by comparing privacy APIs and differ-
ent privacy laws supported by the wrapper and its internal
PICO SDKs. Such information has been recorded in the PICO
METADB (see PICO METADB in § 4.4). For PVP #8, PSI
adopted static taint analysis to check whether the privacy pa-
rameters in the wrapper’s privacy APIs are propagated through
program paths to parameters of internal PICO SDKs’ pri-
vacy APIs. PUI considers that such program paths may come
with condition checks before invocations of the internal PICO
SDK’s privacy APIs. To identify improper conditions that re-
strict the privacy propagation (PVP #9), we leverage an ap-
proach based on the data dependency of the conditions being
checked, inspired by prior studies that detect hidden opera-
tions [84] or logic bombs [88]. Specifically, PSI performs
backward data dependency analysis for a condition variable.
If its value is independent of a privacy parameter (those in the
wrapper’s privacy APIs), this indicates that such a condition
can be implicit and unknown to the apps that configure the
wrapper’s APIs. We consider such a condition to be a violation
under PVP #9. For example, in identifying the above exam-
ple involving Admost which imposes an improper condition
by checking IP addresses, PSI finds that IP addresses is not
propagated from any parameters of Admost SDK’s APIs.

4.4 PICO METADB
PICOSCAN comes with a PICO METADB that stores metadata
for 65 PICO SDKs on Android whose privacy APIs support
GDPR, CCPA, or COPPA. The 65 PICO SDKs are filtered
from 203 popular SDKs (see § 3.1), and cover three major
SDK categories: 43 ads SDKs, 20 analytics SDKs, and 2 social
network SDKs. Table 2 provides a more detailed breakdown
of SDK types and the supported privacy laws.

From the API documents of the PICO SDKs found in
§ 3.1, we asked the two security researchers to independently
identify two types of APIs: privacy configuration APIs and
the SDKs’ initialization APIs, by searching for keywords,
i.e., “initialize”, “privacy”, and relevant laws including
“GDPR”, “COPPA”, “CCPA”, and “US State laws”, in the doc-
uments. They examined the API descriptions to find indicators
(such as “before”, “after”, and “order”) for the invocation
order and recorded these invocation order requirements.
Afterwards, they reviewed the API arguments to identify
which arguments are related to “consent”, “opt-out”, and
“children” (corresponding to three requirements noted in the
scope of research in § 3.1). They were then asked to validate
each other’s findings, resolve any disagreements through
discussions, and combine them.

In total, PICO METADB includes 191 privacy APIs and

Table 2: Distribution of SDKs in PICO METADB

SDK Type # PICO SDKs Supporting Subtotal
GDPR CCPA COPPA

Ads 41 33 29 43
Analytics 20 5 4 20

Social Network 0 1 1 2

Subtotal 61 39 34 65

146 initialization APIs of the 65 PICO SDKs. The privacy
APIs include 106 APIs for GDPR compliance provided by 61
SDKs, 47 APIs for CCPA compliance provided by 39 SDKs,
and 38 APIs for COPPA compliance provided by 34 SDKs.
The PICO METADB recorded metadata of the APIs useful for
our analysis, including API signatures (including class names,
method names, parameters types), corresponding privacy laws,
parameters with privacy semantics and values of compliance
(e.g., a true parameter indicating child users in a COPPA API
setIsAgeRestricted), and constraints for the correct use
of the APIs (e.g., order of API invocations), etc. We show an
example of the metadata for Bytedance APIs in Appendix
(Figure 5). For reproducibility, the API documents and the
resulting PICO METADB have been released at [17].

5 Implementation and Evaluation

5.1 Implementation
The static analysis techniques are mostly implemented with
Soot [32], one of the most commonly used frameworks for Java
and Android analysis. To achieve better coverage, we built app
call graphs using an extensive list of app entries, including all
lifecycle functions of the registered app components, as well
as app methods that match any of the 879 subsignatures of
the system callback methods (as reported in EdgeMiner [45]).
We built the Interprocedural Control-Flow Graph (ICFG)
in the Soot framework using Heros [16] . On top of the call
graph and the ICFG, we implemented techniques for constant
propagation, and data dependency analysis. In total, we
implemented the static analysis with 4,587 lines of code.

The detection of certain PVPs, i.e., #4, #5, #6, and #8, relies
on taint analysis, for which we leveraged FlowDroid [40], a
state-of-the-art tool for static taint analysis. Specifically, for
PVPs #4 and #6, we used FlowDroid to trace the propaga-
tion from privacy API parameters to SDK internal variables
(IPSVs) storing the parameter values. A key challenge in di-
rectly applying FlowDroid is that it only accepts APIs as taint
sources and sinks, rather than specific privacy API parameters.
We resolved this issue by adapting FlowDroid’s source-sink
manager, AccessPathBasedSourceSinkManager, to allow
any program statement and variables, including API param-
eters, to serve as a source in taint tracking. Based on that,
we executed FlowDroid using the privacy API parameters
recorded in PICO METADB as sources and 138 networking
and file access APIs collected from prior studies [66,70,87] as
sinks. Then, we identified the IPSVs by analyzing the propaga-
tion of privacy API parameters within PICO SDKs through a

TaintPropagationHandler. For PVP #5, we track the expo-
sure of user personal data to the Internet by running FlowDroid
with a compiled list of 26 sources and 138 sinks based on prior
studies [66, 70, 87]. For PVP #8 (broken privacy delegation),
we used the privacy parameters in the PICO wrapper’s privacy
APIs as sources and the privacy APIs of the encapsulated PICO
SDKs as sinks. We report a PVP #8 risk if an expected taint
path (or information flow) was not observed.

To perform runtime user preference analysis, we mon-
itor the content on app user interfaces by intercepting
all window content change events using the accessibility
service (AS) event TYPE_WINDOW_CONTENT_CHANGED.
Upon each event, we enumerate all the UI elements by
traversing the tree of AccessibilityNodeInfo objects,
and tell whether the elements are related to privacy by
matching crafted regex (as noted above). We exercise the
privacy-related UI elements by issuing automated clicks by
AccessibilityNodeInfo.performAction. In addition, the
runtime value analysis is built upon Frida [8] – one of the most
popular app dynamic instrumentation tools for Android. The
dynamic analysis is implemented with 804 lines of Java code
and 1,094 lines of Python code.

5.2 Evaluation
Groundtruth datasets. To assess the effectiveness of
PICOSCAN in detecting PICO risks, we constructed two
groundtruth datasets: the app evaluation dataset and the PICO
METADB evaluation dataset.

The app evaluation dataset contains 40 randomly selected
apps along with their PICO risks related to app-related PVPs
(#1-#3). We installed these apps on a Pixel 6 device, manually
exercised the apps, and used Frida to record the stack traces
and parameters of any PICO SDK initialization and privacy
APIs invoked by the apps [8]. To confirm the PICO risks
of these apps, we manually checked the stack traces and
parameters based on the definition of the app-related PVPs.
For example, we flagged PVP #1 if a PICO SDK initialization
API was invoked by the app’s first-party code without its
privacy APIs. The appearance of any PVP in the apps is
considered an instance of PICO risk, and in total, we identified
14 instances of PICO risk across 13 apps.

The PICO SDK evaluation dataset includes 10 randomly
sampled PICO SDKs from the total of 65, with three of them
being PICO wrappers. To execute the SDKs, we selected the
app with the highest number of downloads among all apps in
APPSET that utilize each SDK. We installed, ran, and analyzed
these apps containing the PICO SDKs using similar techniques
as described above. We tailored the manual confirmation
process to verify the presence of PICO risks related to PICO
SDK and PICO wrapper. For instance, to detect PVP #4, we
manually identified methods in the apps that return privacy
configurations through reverse-engineering, and then hooked
into these methods to retrieve the default configuration." This
process, particularly the manual reverse engineering and PVP

confirmation, was labor-intensive and required two security
researchers nine days to complete. In total, we identified 16
instances of PICO risk in these apps. Table 3 provides the
breakdown of all the PVPs in the two groundtruth datasets.

Table 3: Groundtruth datasets

Dataset PVP

#1 #2 #3 #4 #5 #6 #7 #8 #9

App Groundtruth 11 2 1 - - - - - -
PICO SDK Groundtruth - - - 6 1 1 3 3 2

Evaluation results. We ran PICOSCAN on the apps in the
two groundtruth datasets on a computer equipped with two
AMD EPYC 7742 processors and 256 GB of memory. On
average, each app took 425.7 seconds to finish the analysis.
Then, we compared the results with the groundtruth datasets.
Overall, PICOSCAN achieves 87.5% precision and 77.8%
recall for detecting PICO risks caused by apps, and 85.7%
precision and 90.0% recall for detecting PICO risks in PICO
SDKs and PICO wrappers.
• False positives. PICOSCAN reported five false positive
PICO risks: two related to PVP #1, two related to PVP #6, and
one related to PVP #8. The primary cause of these false pos-
itives is the inaccurate and incomplete call graphs generated
for the apps. For instance, two apps employ dynamic method
dispatching or callbacks when invoking privacy APIs of PICO
SDKs. PICOSCAN erroneously flagged these two apps with
PVP #1 (missing configuration) because static analysis failed
to identify the privacy APIs on the call graph, even though they
were indeed invoked. Another app was flagged with PVP #8
(broken privacy delegation) because a wrapper SDK failed to
call privacy APIs of its underlying PICO SDKs. However, upon
investigation, we discovered that the reported PICO wrapper,
Vungle, was not actually a wrapper SDK. PICOSCAN
mistakenly identified it as a wrapper due to overestimation in
call graph construction, which connected another SDK’s ini-
tialization API to that of the Vungle SDK. Other false positives
were also attributed to the inaccuracies of static analysis.
• False negatives. PICOSCAN reported four false negatives,
with two related to PVP #1 and two related to PVP #4. The
causes are twofold. First, for PVP #1, PICOSCAN failed to
identify missing privacy API invocations in Unity3D. Specifi-
cally, Unity3D employs the same API for three different laws,
with the first API parameter specifying which law. Due to the
limitation that PICOSCAN does not differentiate APIs based
on parameters, it mistakenly considers privacy APIs for CCPA
and COPPA to be invoked, even though the API is intended
solely for configuring GDPR. Second, for PVP #4, PICOSCAN
detects the default value of privacy APIs by monitoring the
values of IPSVs identified through static analysis. However,
certain SDKs, such as Ogury, do not utilize IPSVs for storing
privacy configurations; rather, they store the configuration di-
rectly into persistent storage (i.e., “IS_CHILD_UNDER_COPPA”
in shared preferences). Consequently, PICOSCAN was unable
to determine the default value for the absence of IPSVs.

6 Measurement
For measuring PICO risks in the wild, we collect a set of
48,305 mobile apps (called APPSET) by crawling Google
Play [57] using a Go-based crawler [33] in October 2023.
Specifically, we collected the package names of all 7,753,757
apps that have ever appeared on Google Play (as recorded by
AndroZoo [34]), and randomly shuffled the package names
before crawling. We followed the order of the shuffled package
names and crawled an app if it was relatively new (updated
after January 1, 2020) and available in both the United States
(including California) and the EU2. Among the apps in the
APPSET, at least 827 were expected to comply with COPPA
since they are committed to follow the Play Families Policy [9].
We report GDPR and CCPA risks over the entire APPSET, and
COPPA risks over the 827 apps.

6.1 Landscape
Usage of PICO SDKs. Running PUI on the APPSET, we
found that 58 PICO SDKs in the PICO METADB are actively
used by apps in the APPSET, i.e., SDK initialization APIs are
reachable from app entry points. These SDKs appear in a total
of 24,844 (51.4%) apps, with AdMob appearing in the highest
number (14,497) of apps and AppNexus in the lowest number
(3) of apps. It is worth noting that not all apps use the most up-to-
date SDK version. In particular, 12,480 (50.2%) of the 24,844
apps invoke the legacy version of at least one PICO SDK that
does not implement the corresponding privacy APIs. Also, we
identified a total of 22 PICO wrappers from the apps using any
PICO SDK, and these PICO wrappers are used by 1,769 apps in
the APPSET. Each PICO wrapper encapsulates an average of
3.08 SDKs, with AppLovin having the maximum number of 13
SDKs in a single app. An app can also use multiple PICO wrap-
pers. For example, com.zloong.eu.dr.gp app contains nine
PICO wrappers, i.e., AdMob, Ironsource and AppLovin, etc.
Overall PICO risks. Table 4 shows the PICO risks that violate
privacy principles for three roles, i.e., apps, PICO SDKs, and
PICO wrappers. Specifically, at least 7,880 apps (31.7% of
24,844) fail to adhere to the privacy principles for apps and are
affected by at least one of PVP #1 to PVP #3. The majority of
the apps are affected by PVP #1, missing privacy configuration.
Among the PICO SDKs in PICO METADB, 36 violate the pri-
vacy principles for individual PICO SDKs and are affected by at
least one of PVP #4 to PVP #6. Most (28) of the 36 PICO SDKs
use a privacy-invading default value for at least one of their
privacy APIs (i.e., PVP #4). Additionally, out of the 22 PICO
wrappers, 16 are affected by at least one of PVP #7 to PVP #9,
thus violating the complete privacy delegation principle.

6.2 PICO Risks Caused by Apps
Missing privacy configuration (PVP #1). Among the 24,844
apps using any PICO SDK, 7,818 (31.5%) missed privacy con-
figurations, i.e., they use PICO SDKs but fail to set up their pri-

2App availability in the EU is determined by a Spain IP.

vacy APIs. The top 40 apps with the most missed privacy APIs
lack, on average, 15 privacy APIs across at least eight PICO
SDKs. These apps include very popular ones installed by over
10 million users, such as com.thinkyeah.smartlockfree,
which lacks 24 privacy API calls in 10 PICO SDKs. We
also found for 16 PICO SDKs, over 50% of the apps using
each of them are affected by missing privacy configurations.
Notable examples include Criteo (99.2%), Amplitude (94.3%),
Bytedance (79.0%), and AppLovin (50.2%).

By examining the distribution of the affected apps and the
developer documentations of the 39 affected PICO SDKs in-
volving PVP #1, we were able to infer a few potential reasons.
First, we found that the way in which PICO SDKs present
privacy configuration options or APIs to app developers is a
potential key factor for missing configurations. A large portion
(25 out of 39, 64.1%) of PICO SDKs document privacy config-
uration APIs as advanced and optional features (in contrast to
regular steps for SDK integration, see below), up to individual
app developers to identify and adopt such advanced features. In
contrast, documentations of the other 14 PICO SDKs (35.9%)
suggest adoption of their privacy APIs as part of the regular
steps for integrating the SDKs. Although adoption of their pri-
vacy APIs are still not mandatory, they may better encourage
apps developers to identify and use privacy APIs. The latter
group of PICO SDKs is significantly less affected by missing
configurations compared to the former group, with a Q3 of
64.3% for the former group (i.e., a quarter of the SDKs have a
missing configuration rate of over 64.3%) and a Q3 of 32.9%
for the latter group, and average missing configuration rates
of 43.2% and 23.8%, respectively. We released the list of the
affected PICO SDKs in the above two groups, their documents
and distribution of the percentage of apps missing privacy con-
figurations for PICO SDKs at the time of our study online [17].
Second, in addition to documents, PICO SDKs also provide
different levels of tooling for app developers to correctly inte-
grate them. Take the Criteo and AppLovin SDK as an example.
AppLovin provides a mediation debugger that help app devel-
opers to visually debug problematic integration of the SDKs,
including configurations by privacy APIs, while Criteo does
not provide similar tooling. This could be one potential reason
why apps using AppLovin are much less affected than those
using Criteo. Third, from the apps’ perspective, it might be
the case that more popular apps may have greater resources
for privacy related engineering and testing. We noticed that
only a small fraction (4.7%) of apps using Criteo had more
than 1,000,000 installations, while a larger proportion (27.9%)
of apps using AppLovin achieved such a milestone. Overall,
although many PICO SDKs provide privacy configurability,
a substantial number of Android apps have yet to adopt them.
Hence, the Android ecosystem could greatly benefit from more
effective tools, such as those provided by SDK providers, to
ensure developers’ adoption of these privacy APIs when inte-
grating PICO SDKs.

Table 4: Overall PICO risks

PICO Risks Caused by Apps PICO Risks Caused by PICO SDKs PICO Risks Caused by PICO Wrappers

PVP # Apps # Involved PICO SDKs PVP # PICO SDKs # Affected Apps PVP # PICO Wrappers # Affected Apps

PVP #1 7,818 39 PVP #4 28 20,201 PVP #7 11 322
PVP #2 259 6 PVP #5 16 14,869 PVP #8 12 232
PVP #3 56 3 PVP #6 8 2,097 PVP #9 3 282

Subtotal 7,880 40 Subtotal 36 20,302 Subtotal 16 591

Notably, we don’t have ground truth for what the app devel-
opers experienced and what development tools they actually
used when integrating PICO SDKs. Hence, we may not judge
all reasons why app developers came with PVP #1. However,
based on our study, the reasons we discussed above could at
least partially cause PVP #1 or make it difficult to avoid in the
wild. The similar is true for our causal analysis of other PVPs.

Configuration disregarding or inconsistent with user
privacy preference (PVP #2). We found that 259 apps, while
invoking privacy APIs, fail to configure the APIs correctly
according to user preferences. For example, 248 apps choose
to hard-code the parameters of privacy APIs (in six PICO
SDKs) which allows unexpected data exposure regardless
of their preferences. We suspect that this choice is driven by
factors such as the revenues and privacy engineering cost. For
example, many apps often serve as ad publishers, which rely
on data collection and personalized ads features to maximize
revenues. Hard-coding privacy APIs allows them to quickly
enable such features with minimal privacy engineering efforts.

In addition, around 8.8% apps using PICO SDKs are found
to collect user privacy preferences through privacy dialogs.
We found that 11 of these apps still invoke privacy APIs
with parameters that enable data exposure, even when the
privacy dialogs are declined. A closer inspection of these apps
reveals that such discrepancies may stem from app developers’
limited knowledge of privacy compliance. For example, the
socksrevive.plugin.dragon app displays a privacy con-
sent dialog stating that “By agreeing you are confirming that
you are over the age of 16 and would like to personalize your
ad experience” and asks users to consent by clicking a “YES,
I AGREE” button. The presence of the dialog indicates that the
app developer is at least aware of the importance of requesting
privacy consent from users. However, the app only uses the di-
alog as a gating mechanism for new user registrations but fails
to propagate the consent status to any other app components,
including mobile ads, such as the BidMachine SDK. This prob-
lem potentially suggests that the app developer may assume
that their app is privacy-compliant as long as a dialog is pro-
vided, without fully understanding the necessity of supporting
compliance by configuring each individual component.

Erroneous configuration (PVP #3). We observed that eight
PICO SDKs, such as AppLovin [23] and Ironsource [29], in the
PICO METADB require that privacy APIs and initialization
APIs be called in a specific order, which if violated leads
to erroneous and invalid privacy configurations. Although

Figure 3: The distribution of default privacy configurations

the percentage is not high, there are still 56 apps that violate
this requirement on three SDKs: AdMob, Ironsource, and
Unity Ads. In total, these apps were installed over 20 million
times. Given that most apps using these three SDKs meet
the requirement, we believe that the issue with the 56 apps is
primarily caused by implementation flaws of their developers,
considering that all eight of these PICO SDKs explicitly noted
the order constraints in their documents. We released the list
of the eight SDKs and their documents online [17].

6.3 PICO Risks Caused by PICO SDKs

Privacy-invading by default (PVP #4). Among the 65 PICO
SDKs, 28 (43.1%) are found to have at least one privacy API
with a privacy-invading default configuration, affecting 20,201
apps in APPSET. Figure 3 shows the distribution of the default
values of PICO SDK privacy APIs.

The privacy-invading default values are not evenly dis-
tributed among the privacy APIs for different laws, i.e., the
GDPR APIs of eight SDKs, the CCPA APIs of nine SDKs,
and the COPPA APIs of 19 SDKs. A potential reason for this
disparity could be the varied responsibility models adopted by
the PICO SDKs, caused by the differing scopes of applicability
across different laws. For instance, GDPR, with its broader
reach, generally applies to any apps serving individuals within
the EU and those based in the EU, while COPPA specifically
targets apps serving children under the age of 13 in the US. As a
result, many PICO SDKs have largely considered GDPR com-
pliance as a baseline requirement, without privacy-invading de-
fault values. However, regarding COPPA, SDKs have generally
adopted a model where it is the responsibility of app developers
to inform SDKs of COPPA’s applicability (while, without be-
ing informed, the SDK assumes that users are not children and
collects their data by default, as described by Unity Ads [19]).

Another observation is that PICO SDK developers often
do not disclose the default configuration of the privacy

APIs, which goes against the best practices of software
configuration [74]. Even more concerning, some SDKs are
potentially concealing their default configurations from public
scrutiny. An example is the Meta Audience Network SDK.
The SDK has a “limited data use” (LDU) feature for achieving
privacy compliance with US state laws including CCPA.
By default, the SDK uses new String[0] parameter on its
setDataProcessingOptions to completely disable LDU.
The way that this default parameter is specified is suspicious.
Upon initialization, the SDK sets the parameter by reading the
DATA_PROCESSING_OPTIONS_KEY key from the shared prefer-
ence. Since LDU has never been configured before, the shared
preference will return a null, which is then replaced by the SDK
with anew String[0]value. Interestingly, the above key to ac-
cess shared preference is obfuscated with a byte-wise XOR en-
coding by Facebook (in com.facebook.ads.redexgen.X),
while all the other keys are left intact. This appears uncommon
since the only benefit of obfuscating this key, as far as we
can imagine, is to make external reviews more challenging
to identify the default LDU enablement status.

We want to note that the discovered privacy-invading default
values may not fully represent all PICO SDKs. In Figure 3, we
label many APIs as “Unknown, SDK-Dependent” () because
the extracted API parameter does not match any value recorded
in the PICO METADB. For example, Vungle’s COPPA
API has a default COPPA_NOTSET parameter, which does not
match either of the recorded values, i.e., COPPA_ENABLED and
COPPA_DISABLED. While such default values could also invade
privacy, we did not report them as PICO risks related to PVP #4.
Ambiguous consent configuration (PVP #5). Sixteen
PICO SDKs have an ambiguous consent configuration in
their privacy APIs, which, even if well configured, fails
to stop the collection of user personal data. These PICO
SDKs lead to unexpected and bypassing privacy exposure
to 14,869 apps. One prominent piece of personal data being
collected is the advertising ID, a unique ID for advertising. We
believe this issue is mainly caused by the lack of standards
in implementing privacy APIs. Even though PICO SDKs
provide seemingly similar privacy APIs (e.g., for collecting
user consent), they don’t agree on the same privacy assurance.
Ineffective configuration (PVP #6). We identified that eight
PICO SDKs have at least one privacy API that can become
ineffective due to the presence of other program paths that
affect its execution. These PICO SDKs are integrated by 2,097
apps in APPSET. Interestingly, all the eight PICO SDKs, such
as MobileFuse and Appodeal, share IPSVs between their
GDPR and CCPA APIs. As a result, the GDPR configuration
of these PICO SDK is affected, e.g., overridden, by their CCPA
configurations. The reason for this lies in the fact that, similar
to MyTarget, these PICO SDKs have CCPA APIs intended
to offer essentially the same privacy guarantees as their GDPR
APIs, i.e., obtaining user consent for data collection. We
believe this is a result of a common misinterpretation of
CCPA. In reality, CCPA relies on implied user consent for data

collection while requiring options that allow users to opt-out
of selling and sharing personal data. Hence, obtaining user
consent may not lead to full CCPA compliance, as it does not
fulfill the fundamental CCPA requirement regarding opting
out of selling and sharing with third parties directly.

6.4 Privacy Risks Caused by PICO wrappers

Uneven privacy support (PVP #7). The support of privacy
laws across PICO SDKs varies. For example, only 27 (41.5%)
of the 65 PICO SDKs provide privacy APIs for all three
privacy laws. Particularly, 14 out of the 22 PICO wrappers
offer APIs for all these laws. However, most of them (11)
encapsulate at least one PICO SDK that does not provide APIs
for all these laws, resulting in uneven privacy support.
Broken privacy delegation (PVP #8). Even with privacy
APIs to the same privacy law, 12 wrappers (54.5% out of 22)
fail to propagate the privacy configurations into at least one
encapsulated PICO SDK, resulting in inconsistent privacy
configurations in 232 apps. Exploring the documents and
design of PICO SDKs allows us to make several reasonable
guesses. First, the privacy APIs of PICO SDKs often appear in
the optional “advanced settings” documents. PICO wrappers
are not required to configure privacy exposure of PICO SDK
with these APIs before they can access the main functionality
of PICO SDKs. As a result, many PICO wrappers may refrain
from calling the APIs unless it becomes mandatory. Second,
even in the case that PICO wrappers prioritize privacy prop-
agation, their ability to accurately propagate configurations
is often challenged by the opacity of other SDKs, and the mis-
matching semantics of privacy APIs. For instance, Facebook’s
CCPA API, AdSettings.setDataProcessingOptions,
implements the “Limited Data Use” mode to ensure com-
pliance with state laws such as CCPA, for individuals in
California, Colorado, or Connecticut. Unfortunately, this
may not be immediately evident to PICO wrappers, which
commonly interpret CCPA as “do not sell/share” or “opt-out
of selling/sharing”. Therefore, as we suggest in Section 7,
adopting standard privacy APIs (e.g., the IAB compliance
framework [11]) may help minimize the confusion caused by
the custom privacy API implementations of various SDKs.
Conditional propagation (PVP #9). Furthermore, there can
be an issue even if there is a path to propagate privacy config-
urations. For example, three PICO wrappers, i.e., Appodeal,
BidMachine, and Admost, have additional conditions such as
checking IP geolocation when propagating privacy configura-
tions to wrapped PICO SDKs. These conditions affect the prop-
agation of privacy configurations to at least 18 PICO SDKs.

In Figure 4, we illustrate the PICO risks that occur between
a series of PICO wrappers (left) and PICO SDKs (right).

7 Discussion

Disclosure. We reported all the PICO SDKs to related vendors
including SDK and app developers, which were acknowledged

Figure 4: PICO risk by PICO wrappers

by some vendors recently. For example, Vungle confirmed and
fixed the issues in its latest version 7.3.1; five other SDK ven-
dors appreciated the issues we reported and are investigating
them. We will update the vendors’ acknowledgement at [17].
Suggestions to stakeholders. Achieving privacy compliance
requires collective efforts from multiple involved stakeholders.
• SDK developers. Many PICO risks, particularly those asso-
ciated with PICO wrappers, result from ad hoc, non-standard,
and varying implementations of privacy APIs across various
SDKs. Therefore, SDK developers may consider adopting
standard APIs, such as the IAB framework [11], to offer
uniform and interoperable privacy API implementations. Fully
integrating the standard APIs is challenging and can take a
long time because it requires significant changes to both the
client-side and server-side code of PICO SDKs, e.g., to fully
support IAB signals. As a short-term and interim solution,
without overhauling the SDKs’ existing code, SDK developers
may consider developing adapters on the client-side to parse,
propagate, and map standard APIs to the current offerings of
privacy APIs. Furthermore, missing configuration is the most
common risk in the use of PICO SDKs. To mitigate this risk, it
may be reasonable for SDK developers to implement a gating
mechanism or debugger (as done by AppLovin) that verifies
the presence of privacy APIs for each PICO SDK integration.
• App developers. Apps often incorporate many SDKs, and
the privacy configurations of these SDKs can be erroneous
and inconsistent. However, in the regular app development
lifecycle, there are no review or testing procedures specifically
designed to address such errors and inconsistencies. Therefore,
app developers may consider implementing dedicated reviews
or test cases before delivering their apps to the general public.
• Privacy law enforcement agencies. The current PICO SDK
ecosystem has generally adopted a confusing responsibility
model, where PICO SDKs act as data controllers benefiting
from the processing of user-sensitive data, while only the
apps (rather than PICO SDKs) are exposed to pursuits by law
enforcement agencies [53–55]. Hence, PICO SDK providers
have little motivation to support materialized compliance, such

as incorporating privacy-compliant defaults for COPPA. To
address this issue, a more effective approach for law enforce-
ment agencies could be to directly perform compliance checks
on the implementation of popular PICO SDKs, which can also
reduce compliance risks for any apps using these SDKs.
Limitation Discussion. We developed common-sense
principles and PVPs to model expected practices for using
and implementing PICO SDKs. Though they cover various
types of privacy risks, they are not exhaustive. Other relevant
principles and PVPs may exist, which we will explore in
future studies. Our PICOSCAN framework primarily relies on
static app/SDK analysis, supplemented with dynamic analysis
for some PVPs. Due to inherent limitations in processing
dynamically loaded or triggered features, the framework’s
results may not fully reflect app/SDK behavior. This study
primarily examines client-side privacy configurations and
their implications for privacy. However, apps and SDKs
may also use server-side privacy configurations, potentially
conflicting with or overriding client-side settings. Analysis
of server-side configurations and their interactions with
client-side configurations is left for future research.

In addition, this study reported privacy risks that result in
technical violations of several privacy principles. However,
it is possible that these risks do not actually violate privacy
laws. For example, when assessing risks for the CCPA, we
assume that all apps available in California are subject to its
provisions. In fact, the applicability of the CCPA is contingent
upon threshold requirements such as gross annual revenue or
the number of California residents whose data are processed.
It is likely that the apps we reported on do not meet these
requirements, and therefore their privacy risks regarding the
CCPA may not constitute actual violations. A similar situation
may arise with privacy risks related to the GDPR, especially in
cases where the risks manifest in apps that do not use consent
as their legal basis. Analyzing these non-technical factors
and determining actual violations to privacy laws require the
involvement of legal experts and additional non-technical
information, which we consider outside the scope of this study.
Nevertheless, we firmly believe that identifying privacy risks
is highly valuable, as it helps narrow down the analysis of
actual violations. Our PICOSCAN implementation identifies
PICO SDKs and their privacy APIs by matching the package
names and API signatures, respectively, as recorded in the
PICO METADB. As a result, the implementation is not
obfuscation-resistant and cannot cover apps that obfuscate the
PICO SDK code, and hence the measurement results in § 6
represent only a lower bound of the actual PICO risks.

8 Related Work
Over the past years, a series of prior studies have evaluated
the compliance of the privacy policies of mobile apps, and
reported incomplete, vague, incorrect, or misleading privacy
policies regarding data collection, sharing, and data usage
purposes [35, 36, 43, 66, 81, 82, 85]. Similar work also studied

the privacy policies of third-party SDKs [87]. Some other
studies analyzed the issues in app consent notices, and
reported the data collection and third-party tracking that either
without prior consent notices [42, 50, 61–63, 68, 69], or with
notices that do not meet the freely given, specific, informed and
unambiguous requirements of GDPR [41, 61, 62, 64, 69, 78].

Two prior studies [51, 71] are related to our study since they
also discussed the privacy configuration issues of third-party
SDKs. Specifically, Reyes et al. [71] evaluated the COPPA op-
tions by analyzing the traffic generated by child-directed apps
and reported that many of the apps fail to set up these options
although their users are children. This study, relying on traffic
analysis, was unable to attribute the traffic to the app code and
identify the actual causes in the code that violate privacy prin-
ciples, as has been done in our study. Du et al. [51] evaluated
inconsistencies between user withdrawal choices and third-
party library data collection. This privacy issue can stem from
apps failing to configure SDKs for users’ data withdrawal (part
of PVP #2) or from SDKs failing to fulfill their data withdrawal
promises by stopping data collection (part of PVP #5). How-
ever, PVP #2 and #5 in our study are more general, covering
more privacy rights beyond withdrawal (or opt-out), such as
user consent and child privacy rights. Particularly, compared
to both related studies, we comprehensively studied the PICO
SDK ecosystem and developed several privacy principles that
enable the analysis of a broad range of privacy risks. These
risks are represented by nine distinct violation patterns (PVP
#1-#9) and cover different roles in the ecosystem, including
apps, PICO SDKs, and PICO wrappers. Many of these risks
arise from the interactions between these components and have
not been systematically studied before.

9 Conclusion

In this paper, we conduct the first comprehensive measurement
study on the privacy compliance risks of privacy-configurable
SDKs (PICO SDKs) and the apps using them. We built
a database of 65 popular PICO SDKs and analyzed over
48,000 Google Play apps to assess their adherence to privacy
principles, covering both the app developer’s code and the
SDKs’ code. This analysis is facilitated by our development
of a compliance risk analysis framework, PICOSCAN. Our
findings unveil significant privacy risks associated with both
app developers and third-party SDKs, highlighting systemic
issues that underscore the need for improved privacy practices
and configurations in the PICO SDKs’ ecosystem.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
valuable comments and suggestions. This work is supported in
part by NSF CNS-2330265, CNS-1801432 and CNS-2154199.
This research was supported in part by Lilly Endowment,
Inc., through its support for the Indiana University Pervasive
Technology Institute.

References
[1] Admob: Automatically collected user properties. https:

//support.google.com/admob/answer/9755590?hl=en.

[2] Admob: Data collected and shared automatically.
https://developers.google.com/admob/android/
privacy/play-data-disclosure#data_collected_and_
shared_automatically.

[3] Admob’s gdpr api document. https://developers.google.
com/admob/android/privacy#load-and-show-form.

[4] Android library statistics. https://www.appbrain.com/
stats/libraries.

[5] Appodeal’s coppa api document. https://docs.appodeal.
com/android/data-protection/coppa.

[6] Do i need to present a gdpr banner to ip addresses outside of gdpr
regions? https://law.stackexchange.com/questions/
84820/do-i-need-to-present-a-gdpr-banner-to-ip-
addresses-outside-of-gdpr-regions.

[7] Facebook sdk best practices for gdpr compliance.
https://developers.facebook.com/docs/app-
events/gdpr-compliance/.

[8] Frida - dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers. https://frida.re/.

[9] Google play families policies. https://support.google.
com/googleplay/android-developer/answer/9893335?
hl=en.

[10] Hypermx’s coppa api document. https://documentation.
hyprmx.com/android-sdk/getting-started/privacy#
age-restricted-user-flag.

[11] Iab ccpa compliance framework for publishers technology
companies. https://iabtechlab.com/standards/ccpa/.

[12] Ip addresses and the gdpr. https://www.dbswebsite.com/
blog/ip-addresses-gdpr/.

[13] Ironsource’s privacy api document. https://developers.
is.com/ironsource-mobile/android/regulation-
advanced-settings/#step-1.

[14] Ogury’s coppa api document. https://ogury-
ltd.gitbook.io/android/.

[15] Privacy—consent, age-related flags, and data apis.
https://dash.applovin.com/documentation/
mediation/unity/getting-started/privacy.

[16] soot-oss/heros. https://github.com/soot-oss/heros.

[17] Supplementary materials website. https://sites.google.
com/view/picoscan/home.

[18] Tappx’s coppa api document. https://developers.tappx.
com/en/android/COPPA/.

[19] Unity ads’ coppa api document. https://docs.unity.com/
ads/en-us/manual/COPPACompliance#UserLevelCOPPA.

[20] Accessibilityservice | android developers. https:
//developer.android.com/reference/android/
accessibilityservice/AccessibilityService, 2023.

[21] Amazon mobile ads. https://developer.amazon.com/
apps-and-games/mobile-ads, 2023.

https://support.google.com/admob/answer/9755590?hl=en
https://support.google.com/admob/answer/9755590?hl=en
https://developers.google.com/admob/android/privacy/play-data-disclosure#data_collected_and_shared_automatically
https://developers.google.com/admob/android/privacy/play-data-disclosure#data_collected_and_shared_automatically
https://developers.google.com/admob/android/privacy/play-data-disclosure#data_collected_and_shared_automatically
https://developers.google.com/admob/android/privacy#load-and-show-form
https://developers.google.com/admob/android/privacy#load-and-show-form
https://www.appbrain.com/stats/libraries
https://www.appbrain.com/stats/libraries
https://docs.appodeal.com/android/data-protection/coppa
https://docs.appodeal.com/android/data-protection/coppa
https://law.stackexchange.com/questions/84820/do-i-need-to-present-a-gdpr-banner-to-ip-addresses-outside-of-gdpr-regions
https://law.stackexchange.com/questions/84820/do-i-need-to-present-a-gdpr-banner-to-ip-addresses-outside-of-gdpr-regions
https://law.stackexchange.com/questions/84820/do-i-need-to-present-a-gdpr-banner-to-ip-addresses-outside-of-gdpr-regions
https://developers.facebook.com/docs/app-events/gdpr-compliance/
https://developers.facebook.com/docs/app-events/gdpr-compliance/
https://frida.re/
https://support.google.com/googleplay/android-developer/answer/9893335?hl=en
https://support.google.com/googleplay/android-developer/answer/9893335?hl=en
https://support.google.com/googleplay/android-developer/answer/9893335?hl=en
https://documentation.hyprmx.com/android-sdk/getting-started/privacy#age-restricted-user-flag
https://documentation.hyprmx.com/android-sdk/getting-started/privacy#age-restricted-user-flag
https://documentation.hyprmx.com/android-sdk/getting-started/privacy#age-restricted-user-flag
https://iabtechlab.com/standards/ccpa/
https://www.dbswebsite.com/blog/ip-addresses-gdpr/
https://www.dbswebsite.com/blog/ip-addresses-gdpr/
https://developers.is.com/ironsource-mobile/android/regulation-advanced-settings/#step-1
https://developers.is.com/ironsource-mobile/android/regulation-advanced-settings/#step-1
https://developers.is.com/ironsource-mobile/android/regulation-advanced-settings/#step-1
https://ogury-ltd.gitbook.io/android/
https://ogury-ltd.gitbook.io/android/
https://dash.applovin.com/documentation/mediation/unity/getting-started/privacy
https://dash.applovin.com/documentation/mediation/unity/getting-started/privacy
https://github.com/soot-oss/heros
https://sites.google.com/view/picoscan/home
https://sites.google.com/view/picoscan/home
https://developers.tappx.com/en/android/COPPA/
https://developers.tappx.com/en/android/COPPA/
https://docs.unity.com/ads/en-us/manual/COPPACompliance#UserLevelCOPPA
https://docs.unity.com/ads/en-us/manual/COPPACompliance#UserLevelCOPPA
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.amazon.com/apps-and-games/mobile-ads
https://developer.amazon.com/apps-and-games/mobile-ads

[22] Applovin - a comprehensive mobile gaming solution.
https://www.applovin.com/, 2023.

[23] Applovin’s coppa api document. https://support.
applovin.com/hc/en-us/articles/13891460597261-
Privacy, 2023.

[24] Children’s advertising review unit. https://bbbprograms.
org/programs/all-programs/childrens-advertising-
review-unit, 2023.

[25] Children’s online privacy protection rule ("coppa").
https://www.ftc.gov/legal-library/browse/rules/
childrens-online-privacy-protection-rule-coppa,
2023.

[26] Complete guide to gdpr compliance. https://gdpr.eu, 2023.

[27] Consumer data protection act. https://law.lis.virginia.
gov/vacodefull/title59.1/chapter53/, 2023.

[28] Inmobi - mobile sdk for app monetization. https:
//www.inmobi.com/sdk, 2023.

[29] Ironsource’s coppa api document. https://developers.
is.com/ironsource-mobile/android/regulation-
advanced-settings/#step-1, 2023.

[30] Personal information protection law of the peo-
ple’s republic of china - pipl. https://
personalinformationprotectionlaw.com/, 2023.

[31] Sharedpreferences | android developers. https:
//developer.android.com/reference/android/
content/SharedPreferences, 2023.

[32] Soot - a framework for analyzing and transforming java and an-
droid applications. https://soot-oss.github.io/soot/,
2023.

[33] 89z. Google play crawler. https://github.com/89z/
googleplay.

[34] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. Androzoo: Collecting millions of android apps for
the research community. In MSR’16.

[35] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin
Whitaker, William Enck, Bradley Reaves, Kapil Singh, and
Tao Xie. {PolicyLint}: investigating internal privacy policy
contradictions on google play. In USENIX security 2019,
pages 585–602, 2019.

[36] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker,
William Enck, Bradley Reaves, Kapil Singh, and Serge
Egelman. Actions speak louder than words:{Entity-Sensitive}
privacy policy and data flow analysis with {PoliCheck}. In
USENIX Security 2020, pages 985–1002, 2020.

[37] Inc. Anjuna Security. Privacy by default with anjuna and
the nist framework. https://www.anjuna.io/resources/
privacy-by-default-with-anjuna-and-the-nist-
framework, 2023.

[38] Appodeal. Ccpa privacy policy - appodeal. https:
//appodeal.com/ccpa-privacy-policy/, 2023.

[39] Appodeal. Gdpr and ccpa. https://docs.appodeal.com/
android/data-protection/gdpr-and-ccpa, 2023.

[40] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[41] Dino Bollinger, Karel Kubicek, Carlos Cotrini, and David
Basin. Automating cookie consent and {GDPR} violation
detection. In USENIX Security 2022, pages 2893–2910, 2022.

[42] Duc Bui, Brian Tang, and Kang G Shin. Do opt-outs really opt
me out? In CCS 2022, pages 425–439, 2022.

[43] Duc Bui, Yuan Yao, Kang G Shin, Jong-Min Choi, and Junbum
Shin. Consistency analysis of data-usage purposes in mobile
apps. In CCS 2021, pages 2824–2843, 2021.

[44] Lee A Bygrave. Data protection by design and by default:
deciphering the eu’s legislative requirements. Oslo Law
Review, 4(2):105–120, 2017.

[45] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel
Egele, Christopher Kruegel, Giovanni Vigna, and Yan Chen.
Edgeminer: Automatically detecting implicit control flow
transitions through the android framework. In NDSS, 2015.

[46] Colorado Attorney General. Colorado privacy act (cpa). https:
//coag.gov/resources/colorado-privacy-act/, 2023.

[47] AppLovin Corporation. California privacy notice - applovin.
https://www.applovin.com/ca-privacy-notice/,
2023.

[48] Cybersecurity and Infrastructure Security Agency. Art.
25 gdpr - data protection by design and by default.
https://gdpr-info.eu/art-25-gdpr/, 2018.

[49] Cybersecurity and Infrastructure Security Agency.
Shifting the balance of cybersecurity risk: Principles
and approaches for security-by-design and -default.
https://www.cisa.gov/sites/default/files/2023-
04/principles_approaches_for_security-by-design-
default_508_0.pdf, 2023.

[50] Martin Degeling, Christine Utz, Christopher Lentzsch, Henry
Hosseini, Florian Schaub, and Thorsten Holz. We value your
privacy... now take some cookies: Measuring the gdpr’s impact
on web privacy. arXiv preprint arXiv:1808.05096, 2018.

[51] Xiaolin Du, Zhemin Yang, Jiapeng Lin, Yinzhi Cao, and Min
Yang. Withdrawing is believing? detecting inconsistencies
between withdrawal choices and third-party data collections in
mobile apps. In IEEE S&P 2024, pages 14–14. IEEE Computer
Society, 2023.

[52] FTC. Ftc issues final commission report on protecting
consumer privacy. https://www.ftc.gov/news-events/
news/press-releases/2012/03/ftc-issues-final-
commission-report-protecting-consumer-privacy,
2012.

[53] FTC. Android flashlight app developer settles ftc charges
it deceived consumers. https://www.ftc.gov/news-
events/news/press-releases/2013/12/android-
flashlight-app-developer-settles-ftc-charges-
it-deceived-consumers, 2013.

https://www.applovin.com/
https://support.applovin.com/hc/en-us/articles/13891460597261-Privacy
https://support.applovin.com/hc/en-us/articles/13891460597261-Privacy
https://support.applovin.com/hc/en-us/articles/13891460597261-Privacy
https://bbbprograms.org/programs/all-programs/childrens-advertising-review-unit
https://bbbprograms.org/programs/all-programs/childrens-advertising-review-unit
https://bbbprograms.org/programs/all-programs/childrens-advertising-review-unit
https://www.ftc.gov/legal-library/browse/rules/childrens-online-privacy-protection-rule-coppa
https://www.ftc.gov/legal-library/browse/rules/childrens-online-privacy-protection-rule-coppa
https://gdpr.eu
https://law.lis.virginia.gov/vacodefull/title59.1/chapter53/
https://law.lis.virginia.gov/vacodefull/title59.1/chapter53/
https://www.inmobi.com/sdk
https://www.inmobi.com/sdk
https://developers.is.com/ironsource-mobile/android/regulation-advanced-settings/#step-1
https://developers.is.com/ironsource-mobile/android/regulation-advanced-settings/#step-1
https://developers.is.com/ironsource-mobile/android/regulation-advanced-settings/#step-1
https://personalinformationprotectionlaw.com/
https://personalinformationprotectionlaw.com/
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://soot-oss.github.io/soot/
https://github.com/89z/googleplay
https://github.com/89z/googleplay
https://www.anjuna.io/resources/privacy-by-default-with-anjuna-and-the-nist-framework
https://www.anjuna.io/resources/privacy-by-default-with-anjuna-and-the-nist-framework
https://www.anjuna.io/resources/privacy-by-default-with-anjuna-and-the-nist-framework
https://appodeal.com/ccpa-privacy-policy/
https://appodeal.com/ccpa-privacy-policy/
https://docs.appodeal.com/android/data-protection/gdpr-and-ccpa
https://docs.appodeal.com/android/data-protection/gdpr-and-ccpa
https://coag.gov/resources/colorado-privacy-act/
https://coag.gov/resources/colorado-privacy-act/
https://www.applovin.com/ca-privacy-notice/
https://gdpr-info.eu/art-25-gdpr/
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.ftc.gov/news-events/news/press-releases/2012/03/ftc-issues-final-commission-report-protecting-consumer-privacy
https://www.ftc.gov/news-events/news/press-releases/2012/03/ftc-issues-final-commission-report-protecting-consumer-privacy
https://www.ftc.gov/news-events/news/press-releases/2012/03/ftc-issues-final-commission-report-protecting-consumer-privacy
https://www.ftc.gov/news-events/news/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived-consumers
https://www.ftc.gov/news-events/news/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived-consumers
https://www.ftc.gov/news-events/news/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived-consumers
https://www.ftc.gov/news-events/news/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived-consumers

[54] FTC. Google and youtube will pay record $170 million for
alleged violations of children’s privacy law. https://www.
ftc.gov/news-events/news/press-releases/2019/
09/google-youtube-will-pay-record-170-million-
alleged-violations-childrens-privacy-law, 2019.

[55] FTC. Ovulation tracking app premom will be barred from
sharing health data for advertising under proposed ftc or-
der. https://www.ftc.gov/news-events/news/press-
releases/2023/05/ovulation-tracking-app-premom-
will-be-barred-sharing-health-data-advertising-
under-proposed-ftc, 2023.

[56] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented
software. Pearson Deutschland GmbH, 1995.

[57] Google. Android apps on google play. https:
//play.google.com/store/apps.

[58] Google. Building products that are private by design for every-
one. https://safety.google/intl/en_us/principles/,
2023.

[59] Google Play. Copy my data: Transfer content - apps on google
play. https://play.google.com/store/apps/details?
id=com.mediamushroom.copymydata&hl=en, 2023.

[60] GooglePlay. Callapp: Caller id block. https://play.google.
com/store/apps/details?id=com.callapp.contacts,
2023.

[61] Xuehui Hu and Nishanth Sastry. Characterising third party
cookie usage in the eu after gdpr. In WebSci 2019, pages
137–141, 2019.

[62] Simon Koch, Benjamin Altpeter, and Martin Johns. The
{OK} is not enough: A large scale study of consent dialogs
in smartphone applications. In USENIX Security 2023, pages
5467–5484, 2023.

[63] Konrad Kollnig, Pierre Dewitte, Max Van Kleek, Ge Wang,
Daniel Omeiza, Helena Webb, and Nigel Shadbolt. A fait
accompli? an empirical study into the absence of consent to
{Third-Party} tracking in android apps. In SOUPS 2021, pages
181–196, 2021.

[64] Célestin Matte, Nataliia Bielova, and Cristiana Santos. Do
cookie banners respect my choice?: Measuring legal compli-
ance of banners from iab europe’s transparency and consent
framework. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 791–809. IEEE, 2020.

[65] Wei Meng, Ren Ding, Simon P Chung, Steven Han, and Wenke
Lee. The price of free: Privacy leakage in personalized mobile
in-apps ads. In NDSS, pages 1–15, 2016.

[66] Yuhong Nan, Xueqiang Wang, Luyi Xing, Xiaojing Liao,
Ruoyu Wu, Jianliang Wu, Yifan Zhang, and XiaoFeng Wang.
Are you spying on me?{Large-Scale} analysis on {IoT} data
exposure through companion apps. In USENIX Security 2023,
pages 6665–6682, 2023.

[67] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang,
Donglai Zhu, and Min Yang. Finding clues for your secrets:
Semantics-driven, learning-based privacy discovery in mobile
apps. In NDSS, 2018.

[68] Trung Tin Nguyen, Michael Backes, Ninja Marnau, and Ben
Stock. Share first, ask later (or never?) studying violations
of {GDPR’s} explicit consent in android apps. In USENIX
Security 2021, pages 3667–3684, 2021.

[69] Trung Tin Nguyen, Michael Backes, and Ben Stock. Freely
given consent? studying consent notice of third-party tracking
and its violations of gdpr in android apps. In CCS 2022, pages
2369–2383, 2022.

[70] Xiang Pan, Yinzhi Cao, Xuechao Du, Boyuan He, Gan Fang,
Rui Shao, and Yan Chen. {FlowCog}: Context-aware semantics
extraction and analysis of information flow leaks in android
apps. In USENIX Security 2018, pages 1669–1685, 2018.

[71] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari
Bar On, Abbas Razaghpanah, Narseo Vallina-Rodriguez, Serge
Egelman, et al. “won’t somebody think of the children?”
examining coppa compliance at scale. In PETS 2018, 2018.

[72] Jerome H Saltzer and Michael D Schroeder. The protection
of information in computer systems. Proceedings of the IEEE,
63(9):1278–1308, 1975.

[73] Iskander Sanchez-Rola, Matteo Dell’Amico, Platon Kotzias,
Davide Balzarotti, Leyla Bilge, Pierre-Antoine Vervier, and
Igor Santos. Can i opt out yet? gdpr and the global illusion of
cookie control. In Asia CCS 2019, pages 340–351, 2019.

[74] MadCap Software. The definitive guide to creating api documen-
tation. https://assets.madcapsoftware.com/white-
papers/White_Paper-The_Definitive_Guide_to_
Creating_API_Documentation.pdf.

[75] State of California - Department of Justice - Office of the
Attorney General. California consumer privacy act (ccpa).
https://oag.ca.gov/privacy/ccpa, 2023.

[76] State of Connecticut - Office of the Attorney Gen-
eral. The connecticut data privacy act. https:
//portal.ct.gov/AG/Sections/Privacy/The-
Connecticut-Data-Privacy-Act, 2023.

[77] Unity Technologies. Gdpr legal documentation for unity ads.
https://docs.unity3d.com/Packages/com.unity.ads@
3.3/manual/LegalGdpr.html, 2023.

[78] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub,
and Thorsten Holz. (un) informed consent: Studying gdpr
consent notices in the field. In CCS 2019, pages 973–990, 2019.

[79] Vungle. Vungle sdk. https://support.vungle.com/hc/
en-us/categories/200269670-Vungle-SDK, 2023.

[80] Jice Wang, Yue Xiao, et al. Understanding malicious cross-
library data harvesting on android. In USENIX Security, 2021.

[81] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,
Travis D Breaux, and Jianwei Niu. Guileak: Tracing privacy
policy claims on user input data for android applications. In
ICSE 2018, pages 37–47, 2018.

[82] Anhao Xiang, Weiping Pei, and Chuan Yue. Policychecker:
Analyzing the gdpr completeness of mobile apps’ privacy
policies. In CCS 2023, pages 3373–3387, 2023.

[83] Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan,
Xiaojing Liao, and Luyi Xing. Lalaine: Measuring and
characterizing non-compliance of apple privacy labels at scale.
In USENIX Security 2023.

https://www.ftc.gov/news-events/news/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations-childrens-privacy-law
https://www.ftc.gov/news-events/news/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations-childrens-privacy-law
https://www.ftc.gov/news-events/news/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations-childrens-privacy-law
https://www.ftc.gov/news-events/news/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations-childrens-privacy-law
https://www.ftc.gov/news-events/news/press-releases/2023/05/ovulation-tracking-app-premom-will-be-barred-sharing-health-data-advertising-under-proposed-ftc
https://www.ftc.gov/news-events/news/press-releases/2023/05/ovulation-tracking-app-premom-will-be-barred-sharing-health-data-advertising-under-proposed-ftc
https://www.ftc.gov/news-events/news/press-releases/2023/05/ovulation-tracking-app-premom-will-be-barred-sharing-health-data-advertising-under-proposed-ftc
https://www.ftc.gov/news-events/news/press-releases/2023/05/ovulation-tracking-app-premom-will-be-barred-sharing-health-data-advertising-under-proposed-ftc
https://play.google.com/store/apps
https://play.google.com/store/apps
https://safety.google/intl/en_us/principles/
https://play.google.com/store/apps/details?id=com.mediamushroom.copymydata&hl=en
https://play.google.com/store/apps/details?id=com.mediamushroom.copymydata&hl=en
https://play.google.com/store/apps/details?id=com.callapp.contacts
https://play.google.com/store/apps/details?id=com.callapp.contacts
https://assets.madcapsoftware.com/white-papers/White_Paper-The_Definitive_Guide_to_Creating_API_Documentation.pdf
https://assets.madcapsoftware.com/white-papers/White_Paper-The_Definitive_Guide_to_Creating_API_Documentation.pdf
https://assets.madcapsoftware.com/white-papers/White_Paper-The_Definitive_Guide_to_Creating_API_Documentation.pdf
https://oag.ca.gov/privacy/ccpa
https://portal.ct.gov/AG/Sections/Privacy/The-Connecticut-Data-Privacy-Act
https://portal.ct.gov/AG/Sections/Privacy/The-Connecticut-Data-Privacy-Act
https://portal.ct.gov/AG/Sections/Privacy/The-Connecticut-Data-Privacy-Act
https://docs.unity3d.com/Packages/com.unity.ads@3.3/manual/LegalGdpr.html
https://docs.unity3d.com/Packages/com.unity.ads@3.3/manual/LegalGdpr.html
https://support.vungle.com/hc/en-us/categories/200269670-Vungle-SDK
https://support.vungle.com/hc/en-us/categories/200269670-Vungle-SDK

[84] Pan Xiaorui, Wang Xueqiang, Duan Yue, Wang XiaoFeng, and
Yin Heng. Dark hazard: Learning-based, large-scale discovery
of hidden sensitive operations in android apps. In NDSS 2017,
2017.

[85] Le Yu, Xiapu Luo, Jiachi Chen, Hao Zhou, Tao Zhang, Henry
Chang, and Hareton KN Leung. Ppchecker: Towards accessing
the trustworthiness of android apps’ privacy policies. TSE,
47(2):221–242, 2018.

[86] Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux,
and Jianwei Niu. How does misconfiguration of analytic
services compromise mobile privacy? In ICSE 2020, pages
1572–1583, 2020.

[87] Kaifa Zhao, Xian Zhan, Le Yu, Shiyao Zhou, Hao Zhou, Xiapu
Luo, Haoyu Wang, and Yepang Liu. Demystifying privacy
policy of third-party libraries in mobile apps. In ICSE 2023,
pages 1583–1595. IEEE, 2023.

[88] Qingchuan Zhao, Chaoshun Zuo, Brendan Dolan-Gavitt,
Giancarlo Pellegrino, and Zhiqiang Lin. Automatic uncovering
of hidden behaviors from input validation in mobile apps. In
IEEE S&P 2020, pages 1106–1120. IEEE, 2020.

Appendix A
Privacy API Metadata in PICO METADB. In Figure 5, we use
the Bytedance SDK’s initialization and COPPA-related privacy
API to show what privacy API metadata looks like. Essentially, in
a JSON object, we record the API signatures, associated privacy
laws (“apiType”), and API parameters and their privacy semantics
(“apiSemantic”), as well as constraints developers need to follow
for the correct use of the APIs (“apiConstraints”), etc.

{
"Bytedance": {

"apis": [
{
"apiSignature": "<com.bytedance.sdk.openadsdk.

api.init.PAGSdk: void init(android.content
.Context ,com.bytedance.sdk.openadsdk.api.
init.PAGConfig ,com.bytedance.sdk.openadsdk
.api.init.PAGSdk$PAGInitCallback)>",

"apiType": "Init",
"apiSemantic": {}

},
{
"apiSignature": "<com.bytedance.sdk.openadsdk.

api.init.PAGConfig: void setChildDirected(
int)>",

"apiType": "COPPA",
"apiSemantic": {
"parameterIndex": 0,
"dataDisablingValues": [1],
"dataEnablingValues": [0]

}
}

],
"apiConstraints": [

{
"order": ["COPPA", "Init"]

}
]

}
}

Figure 5: Metadata for a privacy API in PICO METADB

Privacy laws and regulations that current PICO SDKs sup-
port. We released the results of our comprehensive review of SDK

Table 5: Constraints on Privacy API Invocations

PICO SDK Law # of APIs Order Constraint

AppLovin COPPA 1 [COPPA, Init] [23]
Appodeal COPPA 1 [COPPA, Init] [5]
Ironsource COPPA 2 [COPPA, Init] [13]
Ironsource CCPA 2 [CCPA, Init] [13]

Tappx COPPA 1 [COPPA, Init] [18]
Unity Ads COPPA 5 [COPPA, Init] [19]
HyperMX COPPA 1 [COPPA, Init] [10]

Ogury COPPA 1 [COPPA, Init] [14]
AdMob GDPR 1 [GDPR, Init] [3]
AdMob COPPA 1 [COPPA, Init] [3]

documents online [17]. We report the privacy laws, regulations, or
guidelines supported by the most popular PICO SDKs listed on
AppBrain, along with the number of SDKs that claim to support
compliance with them using PICO SDK privacy APIs. In total, the
PICO SDKs collectively support at least 20 privacy laws, regulations,
or guidelines, with GDPR, CCPA, and COPPA being the three most
supported laws.
Constraints on privacy API invocations. In Table 5, we present
the constraints that app developers need to follow to correctly
invoke PICO SDK privacy APIs. In total, eight PICO SDKs require
privacy APIs and initialization APIs to be called in a fixed order.
Particularly, all of them instruct developers to call COPPA APIs
before initialization APIs so that the SDKs can prepare child-directed
content, such as ads, during the SDK initialization. These constraints
cover a total of 14 unique privacy APIs.

Figure 6: Privacy dialog of the
AdMob SDK.

Figure 7: Privacy dialog of
com.jhkj.neabot app.

Privacy dialogs of real apps and PICO SDKs. In Figure 6, we show
the privacy dialog posted by the AdMob SDK in apps that integrate
it. This dialog asks users consent to “use your personal data to” offer
personalized ads, etc. Figure 7 displays the privacy dialog posted by
the first-party code of app com.jhkj.neabot, which requests users
consent for data collection, etc.

	Introduction
	Background
	Overview of PiCo SDKs
	Status Quo of PiCo SDKs
	Motivating Example
	PiCo Privacy Principles

	Analyzing PiCo Risks
	PiCo Usage Inspector (PUI)
	Identifying PiCo Usage from Apps
	Patterns of PiCo Risks Caused by Apps
	Detecting PiCo Risks Caused by Apps

	PiCo SDK Inspector (PSI) for PiCo SDKs
	Patterns of PiCo Risks Caused by PiCo SDKs
	Detecting PiCo Risks Caused by PiCo SDKs

	PiCo SDK Inspector for PiCo wrapper
	Patterns of PiCo Risks Caused by PiCo wrappers
	Detecting PiCo Risks Caused by PiCo wrappers

	PiCo MetaDB

	Implementation and Evaluation
	Implementation
	blackEvaluation

	Measurement
	Landscape
	PiCo Risks Caused by Apps
	PiCo Risks Caused by PiCo SDKs
	Privacy Risks Caused by PiCo wrappers

	Discussion
	Related Work
	Conclusion

