WrapDroid: Flexible and Fine-Grained Scheme
Towards Regulating Behaviors of Android Apps

Xuegiang Wang 23, Yuewu Wang! 2, Limin Liu®2®),

Lingguang Lei'2, and Jiwu Jing!»?

! Data Assurance and Communication Security Research Center, CAS,
Beijing, China
2 Institute of Information Engineering, CAS, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China
Imliu@is.ac.cn

Abstract. Accompanying the wide spread of Android mobile devices
and the openness feature of Android ecosystem, untrusted Android apps
are flooding into user’s device and prepared to perform various unwanted
operations stealthily. To better manage installed apps and secure mobile
devices, Android app behaviour regulating schemes are required. In this
paper, we present WrapDroid, a dynamic app behaviour regulating scheme
on Android device. Different from other similar approaches, the key
components of WrapDroid are implemented based on dynamic memory
instrumentation and system call tracing and require no modification to
Android system source code. Thus, WrapDroid could be flexibly adopted
by Android devices. Moreover, by automatically reconstructing call con-
text of Java or native operations, WrapDroid may provide a full range
of control on both java runtime and system call layers of an app. We
also develop a WrapDroid prototype and evaluate it on several devices
from different mainstream OEMs. Evaluation results show that Wrap-
Droid can effectively regulate the behaviors of Android apps according
to given policies with negligible performance overhead.

Keywords: Android + App behaviour regulating + Dynamic instrumen-
tation - Flexible - Fine-grained

1 Introduction

Google’s Android is undoubtedly the most prevalent mobile platform in the
world. In the second quarter of 2014, Android’s market share of the global smart-
phone shipments reached record 84.6 % [1]. Unfortunately Android’s growth in
popularity and its openness feature of app ecosystem have also raised increasing
security concerns. According to the report by Cisco, 99 % of all mobile malwares
in 2013 targeted Android platform [2]. These malicious apps perform various
harmful operations, such as reading personal information or sending SMS with-
out the user’s consent, which may incur privacy leakage or other losses for device
user. While anti-virus measures have been adopted, it is still hard to ensure that
all malicious code is isolated from user’s Android device.

© Springer International Publishing Switzerland 2015
J. Lee and J. Kim (Eds.): ICISC 2014, LNCS 8949, pp. 255-268, 2015.
DOI: 10.1007/978-3-319-15943-0_16

256 X. Wang et al.

Regulating the behaviors of untrusted Android apps according to given secu-
rity policies may hold back the attack procedure of malicious code and secure
user’s device effectively. Android provides permission system to control app’s
behaviors. However, this permission model is too coarse-grained and only grants
an “all-or-nothing” installation option for mobile users to either accept all the
permissions an app asks for or simply decline to install the app. In Android
4.3, an experimental feature called App Ops [3] is added to permit mobile users
to configure one app’s runtime permissions, but this feature has been removed
from Android 4.4.2 due to the increasing burden for user configuration and the
impacts on advertisement market [4].

Several other works are carried out to exert more fine-grained controls on
app’s behaviors. These works mainly focused on two major research directions.
The first direction is accomplished by modifying Android source code. Several
extensions have been introduced into Android permission framework by sys-
tem customization [5-9]. And some efforts are made to adopt mandatory access
control (MAC) to Android [10,11]. However, these approaches require Android
source code modification and would suffer from deployment problem. Changes
on a general Android branch is hard to be built for devices of different OEMs
because of their heterogeneities.

The second one is integrating behavior enforcement module into Android apps
with app rewriting before the app is installed on user’s device [12-18]. This app-
roach does not require any change to Android source code and easy to deploy. How-
ever, it also has several limitations. Firstly, user have to ensure that all installed
untrusted apps are correctly wrapped. Thus, this scheme applies only to ordinary
apps because those stock apps cannot be replaced easily and the burden on user is
greater. Secondly, the scheme, based on rewriting bytecode of an app, can be eas-
ily bypassed by dynamically loading native code into app’s address space. Finally,
the impaction on apps is permanent. For instance, the data associated with the
original app will be lost because of different app signature.

In this paper, a flexible and fine-grained scheme called WrapDroid is pre-
sented to regulate Android apps’ behaviors dynamically. We observed that even
through an app may realize an operation through various interfaces, its opera-
tion traces will always appear in Dalvik interpreter or go through Linux system
calls. By checking these two points, app’s behaviours, whether performed by
native code or Java reflections, can be examined and supervised completely.
Fine-grained policies to constrain behavior of Android apps are supported by
our approach because parameter details of each operation are analysed auto-
matically at the check points. To guarantee its flexibility and easy deployment,
the enforcement modules are based on dynamic Dalvik instrumentation and sys-
tem call tracing. The advantages of the dynamic implementation are threefold.
Firstly, both ordinary apps and stock apps are under regulation. Secondly, the
modules that loaded during run-time are also monitored. Finally, we can launch
behavior regularization flexibly by instrumenting app’s memory address space
and remove its effect by restoring context of the app. In other words, app’s
running environment are modified temporary, which brings no further impact

WrapDroid: Flexible and Fine-Grained Scheme 257

on original app. This paper mainly focuses on the implementation of behavior
regulating, so only an example policy is discussed even through various security
policies can be accepted by WrapDroid. Moreover, Java code regulating can also
be achieved in ART runtime by .oat instrumentation, which makes WrapDroid
available to the latest Android version with some amending.

In summary, we make the following contributions in this paper.

[Framework Code(Java) j

|
App Code(Java)
|
: App&Framework
Dalvik JNI | Code(C/C++)
y
[Dalvik Interpreter j :
[System Libs(C/C++) }
L System Call Interface
E Linux Kernel]

Fig. 1. Android application code structure

— We solved the flexibility problem of regulating behaviors of Android apps.
Our approach is based on dynamic Dalvik instrumentation and system call
tracing, which requires no modification to Android OS. Moreover, the impact
of WrapDroid is minimized because only address space of supervised apps are
instrumented temporarily.

— We achieve a complete and fine-grained control on Android apps. Based on
monitoring of runtime interpreter and system calls of supervised app, both
Java and native code behaviors are put under monitoring. These behavior con-
text accompanying with well-designed policies make our scheme fine-grained.

— We develop a WrapDroid prototype and evaluate its effectiveness and effi-
ciency on several Android devices. The evaluation result show that WrapDroid
can effectively regulating behaviors of Android apps and meanwhile incurs an
ignorable performance overhead.

The remaining of the paper is organized as follows. Section?2 introduces
necessary background knowledge. Section 3 presents WrapDroid system design.
A prototype implementation is detailed in Sect. 4. Section 5 discusses the evalu-
ation of WrapDroid. We describe related works in Sect. 6. Finally, we conclude
the paper in Sect. 7.

2 Background

2.1 App Code Structure

Android, built on top of Linux Kernel, adopts a unique app architecture that
supports both Java code and native (C/C++) code. For one thing, Java code is

258 X. Wang et al.

System Call
Ul&Alerts Enforcement

rules
Behavior Policy
Generator

Fig. 2. WrapDroid architecture

compiled into bytecode and runs on register-based Dalvik VM. For another, linux
shared objects (.so) are available for apps to reuse native libraries or accelerate
performance-critical tasks. These two parts interacts with each other based on
Java Native Interface (JNI) specification and reflection. Figure 1 shows in detail
the code layers in an app’s address space.

App Java code is written based on well-documented Android framework
APIs, most of which are implemented in Java. In order to get executed, Java
classes are compiled into Dalvik Executable Format (.dex) and transferred to
Dalvik VM. The VM is introduced into app’s address space as libdum.so and all
Java methods are eventually managed in its interpreter. However, part of the
Java methods of an app or Android framework are declared as JNI methods and
their required operations, like file and socket operations, are completed in native
code. The native code relies on lower level system libraries and system calls of
Linux kernel.

No matter how complicated an app seems, its code will always appear in
Dalvik interpreter or go through related system calls in order to realize its func-
tionalities. This provides a convenient and complete check point at which an
app’s behaviours can be dynamically examined and supervised.

2.2 App Launching

In Android, app processes are not generated by forking an ordinary process
directly as that in Linux. Instead, zygote process is created during system booting
to serve all process creation request. After we tapped an app icon on the home
screen, a trusted system service, named Activity Manager Service would send a
process creation request to zygote through zygote socket under the hood. The
zygote is able to fork itself and configure child process properties (e.g. gid, uid)
according to the request. Because the child process has inherited loaded libraries,
resources and a Dalvik instance from zygote, it is prepared to load Java classes
of the specific app and get them executed. Therefore, invocations of fork system
call by zygote indicate the very beginning of app processes’ life cycle. They work
as reliable trigger event at which an app is put under monitor.

WrapDroid: Flexible and Fine-Grained Scheme 259

3 System Design

As described in Sect. 2.1, by monitoring interpretation of bytecode or invocation
of system calls initiated by an app, a complete behavior map of the app can be
retrieved and supervised. Our WrapDroid is designed based on the above obser-
vation. The WrapDroid is composed of six components that scatter in different
processes and cooperate to supervise target apps. Its architecture is shown in
Fig. 2.

It is device owner oriented and the Ul& Alerts accepts behaviour policy items
from the owner. These items consist of target apps and a set of regulated behav-
iour patterns for them. The Behaviour Policy Generator (BPG) translates all
the items and passes them on to Behaviour Policy Repository (BPR).

When WrapDroid is deployed, the Process Creation Detector (PCD) starts
tracing zygote for newly created processes. The PCD maps these child processes
to their hosting apps. If a hosting app is designated as a monitoring target, its
processes are put under monitor immediately after process creation completes.
The System Call Enforcement (SCE) implements a system call interposition
based on ptrace and is responsible to regulate native code operations of tar-
get process by enforcing confinement on system calls according to BPR. The
Java Method Enforcement (JME) is injected into target process and works by
hijacking entry functions of interpreter. Every time a sensitive method frame is
retrieved from interpretation stack, JMFE would determine whether its execution
should be confined.

4 Implementation

We have implemented a WrapDroid prototype and the detailed description of
each key component is given below.

4.1 Process Creation Detector

As shown in Sect. 2, zygote is responsible to fork an app process upon a process
creation request from Activity Manager Service. To guarantee that the entire life
cycle of the target app is monitored, PCD is introduced to detect newly created
processes by tracing system calls of zygote.

We surveyed several existing system call tracing techniques, but most of
them cannot satisfy the flexibility requirement. Some of them require enabling
certain Linux kernel features, including kprobes [19]. Some others, like ftrace [20],
is inflexible and weak in system call supervision. In our work, we monitor system
calls of target process based on ptrace. Because signals are delivered from target
process to our tracer at both the entry and exit of system calls, we have to use
a history stack to distinguish between syscall-enter-stop and syscall-exit-stop.
Moreover, by analysing and interposing registers and address space of the target
process, detailed parameters of system calls are retrieved and their execution
controlled.

260 X. Wang et al.

Because any app identifier hasn’t been set for the new process when fork
returns, we have to relate the process to an app through other ways. In Android,
each app package is regarded as a user and assigned a unique uid. We observed
that the new process will set its wid right after fork returns from zygote. There-
fore, identifying parameters of setuid helps to map the process to an app. If the
hosting app should be monitored, WrapDroid would immediately start SCE and
inject JME component into the process.

However, not all processes that related to an app derive from zygote. For
example, an app process may launch Runtime.exec or directly fork its own child
process. In this case, it’s not complete to trace only zygote in PCD. To address
this problem, the app process tree is traced recursively in PCD by means of
specifying PTRAC_O_TRACEFORK option for ptrace.

4.2 Java Method Enforcement

The JME works in target process and is based on code injection. Because
Android is built on top of Linux kernel, code injection techniques used in Linux
also apply to Android. And ptrace offers us an available way. Listing 1.1 shows
an overview of code injection procedure. Target process is attached to our tracer
by attchToTarget. Upon a successful attachment, registers of target process are
reserved so as to restore original execution state. Then we can obtain free mem-
ory for injected code by initiating a mmap function in target process. Because
all Android processes share an identical mapping of system libraries including
libc.so where mmap is defined, the mmap address in target process is the same
as that in the tracer and can be easily obtained. After running putCodelnTarget
method, the free memory is filled with the injected code. By adjusting registers
(pe, Ir, etc.) of target process, the injected code gets executed before restoring
normal code sequence. Now the environment of target process has been changed
and we can detach our tracer.

Listing 1.1. Code injection based on ptrace

1 void codeInjection(pid_t pid,
const charx* func,

3 int length,
RO R
5 attchToTarget (pid);
regs = getRegsOfTarget (pid);
7
//freeMem: where code is injected
9 freeMem = getMemoryOfTarget (pid);
11 //func: address of injected code
//length: size of the code
13 putCodeInTarget (pid, freeMem,
func, length);
15

manageRegs (®s);

17 setRegs0fTarget (pid, regs);
detachTarget (pid);

19 3

WrapDroid: Flexible and Fine-Grained Scheme 261

Every Dalvik thread maintains an interp stack in order to manage Java
method and mimicked native method frames. These frames could be consumed
by interpreter or by execution of native functions. Figure 3 shows some details
inside of the VM. After obtaining a frame from interp stack, the thread would
firstly decide whether the frame represents a JNI method. Native code of a JNI
method is retrieved from DalvikBridgeFunc field of Method structure. A Java
method frame is dispatched to different entries of interpreter in the light of dif-
ferent interpreter mode. The interpreter in fast/jit mode is coded in assembly
language or has adopted Just In Time (jit), and thus relatively faster in byte-
code interpretation. The method frame is delivered to an entry function named
dvmMterpStdRun under this mode. However, for portability consideration, inter-
preter in portable mode is implemented in C language. Its entry function is
dvmlInterpStd. In our work, interpreter mode is fetched from system property
dalvik.vm.execution-mode. By inline-hooking of the above entry functions, exe-
cution flow can be regulated based on information of current method and thread
state. As can be seen in Fig. 3, function javaMethEnforce hijacks the interpreter
and is responsible to enforce constraints on Java methods.

Interp Stack

args JUUSEE -
method N

DalvikBridgeFunc
fast/jit portable
i i

[javaMethEnforce)

| |

dvmMterpStdRun ‘ dvminterpretStd ‘

Fig. 3. Java method enforcement implementation

The key step of javaMethEnforce is extracting method details. We process
parameters by scanning the method signature, where parameter types are des-
ignated. Primitive parameters are directly stored in stack and reference ones
could be retrieved from Dalvik heap. Some simple reference variables, includ-
ing String and primitive arrays, are parsed directly from heap memory. While
the compound ones, like Intent, are sophisticated and made up of nested vari-
ables. Inside of Dalvik, every reference type is represented by a ClassObject. All
fields and methods of the type are defined in the ClassObject. We automatically
analyse compound variables by enumerating its fields and reduce them to simple
types. To make our idea clear, a typical method that containing a SMS intent is
given in Table 1. Particularly, reflection method can be detected from an object
that labelled Ljava/lang/reflect/Method;.

262 X. Wang et al.

Table 1. A typical method resolved in JME

Property name | Property value

Package com.example.android.Msg

Thread Main

Class Landroid/app/instrumentation;

Method checkStartActivityResult(IL)

Argument Intent[mAction(android.intent.action.SEND), Uri(smsto:10010)]

Java method can be regulated by fabricating input parameters and return
values. However, implementation of JMFE depends on interleaved structure and
function definitions inside Dalvik. It’s tedious to include all the definitions one
by one. Hence, we compile JMFE on top of Dalvik part of Android Open Source
Project (AOSP). Because no hardware module is involved in Dalvik, the recom-
piled JMFE applies to devices from different OEMs. Moreover, there exist differ-
ent definition details through Android versions. For example, interpreter entry
of Android 2.3 requires parameter of type InterpState pointer, while Android
4.0 or higher version requires Thread pointer. To guarantee compatibility, we
customize a JME module for every existing Android version.

L syscall —

Fig. 4. Workflow of system call enforcement (SCE)

4.3 System Call Enforcement

The SCE component implementes the ptrace approach described in Sect.4.1.
Figure4 outlines how SCE works. The target process would be suspended at
the entry and exit of system calls. And meanwhile, SCE would be awakened
by signals from the target process. The SCFE is then able to enforce constraints
based on system call details and rules from BPR.

For example, SCE enforces a series of network rules to regulate how an app
accesses network resources. Basically, each app is prohibited from interacting
with malicious remote addresses that defined in an IP blacklist. By managing

WrapDroid: Flexible and Fine-Grained Scheme 263

parameters at the entry of socket related system calls, including connect, sendto
and recvufrom, communications between the app and malicious network servers
are restricted. Furthermore, to fully regulate an app’s network access and mean-
while guarantee its usability, network data that from untrusted IP are forged
before handling it to user space app. It is accomplished by modifying return
data at the exit of socket calls, like buffer of recufrom.

4.4 Behaviour Policy Definition

In WrapDroid, device user is able to initiate policies for an app with UI& Alerts
module. The BPG is responsible to translate human-readable policies to policy
items stored in BPR. We have defined WrapDroid policy language on top of
policies of FireDroid [21] and the syntax is shown in Listing 1.2. Compared to
FireDroid, our system pays more emphasis on high-level Java code regulation
and alleviates the tediousness of defining low-level policies.

Listing 1.2. The syntax of the WrapDroid policy language

1 Package Operation [param-list]
2 if condition then outcome

The package works as a unique identification for target processes and is the
basic unit for policy enforcement. A package requests an Operation on a condi-
tion. The policy would evaluate the outcome (allow or deny) for this behaviour.
Different from FireDroid, our condition clause supports not only related con-
text information but also how this behaviour is performed (e.g., normal Java
APIs, Java reflections, native code). To make the syntax clear, we introduce a
scenario to regulate SMS behaviours. Listing 1.3 shows how SMS destination,
frequency and content are constrained for package com.android.mms. Particu-
larly, some malicious apps may send SMS in native code by reflection to evade
static analysis. The isByReflection clause prevents this kind of behavior.

Listing 1.3. Policy to control SMS

com.android.mms sendSMS [dst, content, lastSMSTimel]
if (isByReflection) then deny
if (blacklist contains dst) then deny
if ((currentTime-lastSMSTime) < 1h) then deny
if (content contains ’Y’) then deny
if (content contains number) then deny

DU WN —

5 Performance Evaluation

We evaluate the performance of WrapDroid in three aspects: (I) to demonstrate
its effectiveness by enforcing restriction on prevalent apps; (II) to evaluate app
performance overhead caused by adoption of WrapDroid; (III) to evaluate the
impact on app launching. The experiment results demonstrate that WrapDroid
can effectively regulate app’s operations with reasonable performance overhead.

264 X. Wang et al.

5.1 Effectiveness Evaluation

To test effectiveness of WrapDroid, we downloaded top 1050 apps from
wandougia [22], one of the most popular Android market of China, as an experi-
ment sample. We evaluate how WrapDroid works to regulate SMS sending behav-
ior of sample apps. By static analysis, 113 out of 1050 apps are found to request
SEND_SMS permission in their manifest files. We originally planned to run each
of the selected apps with monkey, an automatic event generator. However, only
a few SMS sending operations are detected for random fuzzing feature of mon-
key. Hence, manual work is merged in our evaluation. Among the 113 apps, 35
apps have actually sent SMS and 40 destination numbers have been detected.
In the experiment, we set the policy as “shutting down all the SMS message
sending operations” and “restricting all SMS messages sent to “1065*”” sepa-
rately. According to the bill from SMS service provider, WrapDroid meets our
behaviour regulating expectation exactly.

5.2 App Running Efficiency

CaffeineMark 3.0 supports Android platform and runs as an Android app. It’s
score represents app’s running efficiency. We run the benchmark on Nexus S with
Android 4.1.2 under normal Android system and when WrapDroid is active. The
result is shown in Fig.5. As can be seen, the overhead of sieve, logic, loop and
float tests incurred by WrapDroid is limited to 7%. The string and method
tests suffer from more performance loss of 16 % and 11 % because much more
work is done on method and parameter analysis. While the overall overhead of
CaffeineMark is 8.5 %, which means no noticeable impact has been brought to
user experience.

[T Without WrapDroid
With WrapDroid
10000 4
v

8000 ~ 7

6000 ~

=T

f
Sieve Loop Logic String Float Method ~ Overall
CaffeineMark 3.0

Score

Fig. 5. CaffeineMark result of app running efficiency

Most of the functionality of Android apps are achieved by Framework APIs,
which is not the key test factor of the above benchmark. Hence, we experi-
mented on an app that performs a large amount of API invocations. An over-
head comparison is made between WrapDroid and Aurasium [15], which is a

Table 2. Comparing WrapDroid with Aurasium

WrapDroid: Flexible and Fine-Grained Scheme

265

200 API Without With WrapDroid | Aurasium
invocations WrapDroid | WrapDroid | overhead overhead
Get device info 131 ms 145 ms 11% 35%

Get last location | 71ms 79ms 12% 34 %
Query contact list | 132 ms 143 ms 8% 14%

policy enforcement scheme based on libc interposition. The evaluation result is
shown in Table2. Our WrapDroid is accomplished in higher Dalvik layer and
thus more direct in parsing operations than Aurasium. Correspondingly, API
invocation overhead of WrapDroid is much smaller than Aurasium.

5.3 App Launching Efficiency

As described in Sects. 2 and 4, app launching procedure stretches across several
processes (e.g., zygote, system_server). Efficiency of app launching would be
affected because these processes are under monitoring of system call tracing
and runtime instrumentation. We evaluate it by designing an experimental app.
The app initiates a startService request, and calculates time consumed when the
service succeeds in running onCreate. The app is executed 10 times in normal
Android and when WrapDroid is active on three devices: Nexus S (Samsung)
with Android 2.3.6, Sony L.T29i with Android 4.1.2, Meizu MX II with Android
4.2.1 and Samsung Galaxy Note II with Android 4.2.1. The result is shown in
Table 3. We notice that the maximal time difference is within 23 ms, which can
be ignored given the low frequency of app launching events.

Table 3. App launching efficiency

Device Without WrapDroid | With WrapDroid | Delay
Nexus S (Samsung) 73 ms 90 ms 17ms
Sony LT29i 95 ms 112 ms 17 ms
Meizu MX II 98 ms 106 ms 8 ms
Samsung Galaxy Note II | 50 ms 73 ms 23 ms

6 Related Work

Researchers have worked on various aspects to regulate behaviors of Android
apps and we categorize them into three classes by technical features.

Modifying Android source code. Many approaches based on source code
customization have been proposed to regulate behaviors of Android apps. Some

266 X. Wang et al.

of them aim to enforce constraints based on extending permission mechanism.
Apex [5] enables user to grant a selected set of permissions and supports user-
defined restrictions on apps. CRePE [6] introduces external device context to
refine permission policies. The privacy mode of TISSA [7] empowers users to
define the kinds of personal information that are accessible to apps. And Coma-
pat [8] restricts permissions of components to mitigate security problems aroused
by a third-party component. Another way is accomplished by introducing
Security Enhanced Linux (SELinux). References [10,11] implements concepts
of SELinux on both Android’s middleware and kernel layers to enhance a flex-
ible mandatory access control (MAC). Besides directly regulating behaviors of
Android apps, securing privacy data leads to the same destination. Reference [23]
replaces private data with dummy data before providing it to apps. However,
these approaches require Android source code modification and would suffer from
deployment problem because of vendor customization. Our system performs all
modification to Android apps by dynamic Dalvik instrumentation and system
call tracing and thus can be deployed easily.

App rewriting. To make them portable, many approaches are implemented
by integrating behavior regularization modules into Android apps by rewriting.
With the rewritten dalvik bytecode, [12] is able to identify and interpose Secu-
rity Sensitive APIs. Reference [13] uses static and dynamic method interception
to retrofit app’s behaviors. Reference [14] is an on-the-phone instrumentation
scheme and its policies are based on interception of high-level java calls. Nev-
ertheless, security policies of [15] are enforced by interposing low-level libe. so.
Reference [16] introduces a new module that supports parameterized permis-
sions and requests of sensitive resources from apps are forwarded to this mod-
ule. App rewriting is an effective way that requires no modification to Android
ROM. However, incomplete implementations of bytecode rewriting may result
in several potential attacks [17]. It is difficult to assure that all apps installed
are rewritten version of the original app. Due to signature difference of repack-
aging process, all history information of the original app cannot be shared by
the rewritten app. In addition, system apps cannot be replaced easily so app
rewriting only applies to third-party apps.

7 Conclusions and Future Work

Based on an observation that behaviours of an app can always be monitored
completely in Dalvik interpreter or execution of system calls, we propose an
app behaviour regulating scheme named WrapDroid based on dynamic instru-
mentation of Dalvik runtime and system call tracing. WrapDroid is flexible to
enforce constraints on Android apps because this dynamic approach requires not
any Android source code modification. WrapDroid monitors app’s behavior from
both Dalvik and system call layer, so operations of Java and native code are reg-
ulated completely. Moreover, through automatic recovery of operation context
(e.g. parameters or call logs) and a set of policies, we can achieve a fine-grained
control on Android apps. The evaluation of WrapDroid prototype demonstrates

WrapDroid: Flexible and Fine-Grained Scheme 267

that our system can effectively regulate apps’ behaviors with reasonable over-
head.

At Google I/0 2014 conference, Android L was unveiled and the previously
experimental Android Runtime (ART) has replaced Dalvik as a default envi-
ronment. ART compiles byte code into executable ELF only once during app
installation. We are now designing a scheme that monitors an app executed on
ART by instrumenting compiled .oat executable file. WrapDroid would be fully
effective on even the newest ART runtime after this future work is merged in.

Acknowledgement. This research was supported by the National Grand Fundamen-
tal Research 973 Program of China (Grant No. 2013CB338001 and No. 2014CB340603)
and program of Computer Network Information Center of Chinese Academy of
Sciences.

References

1. Strategy analytics: 85 % of phones shipped last quarter run android. http://bgr.
com/2014/07/31/android-vs-ios-vs-windows- phone-vs-blackberry/

2. Cisco 2014 annual security report. http://www.cisco.com/web/offer/gist_ty2_
asset/Cisco_2014_ASR.pdf

3. App ops: Android 4.3’s hidden app permission manager, control permissions for
individual apps! http://www.androidpolice.com/2013/07/25/app-ops-android-4--
3s/hidden-app-permission-manager /-control-permissions-for /-individual-apps/

4. App ops removed by google in android 4.4.2 update. http://www.phonearena.com/
news/App-Ops-removed-by-Google-in- Android-4.4.2-update_id50340/

5. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model
and enforcement with user-defined runtime constraints. In: Proceedings of the 5th
ACM Symposium on Information, Computer and Communications Security (2010)

6. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: context-related policy enforcement
for android. In: Burmester, M., Tsudik, G., Magliveras, S., Ili¢, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 331-345. Springer, Heidelberg (2011)

7. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-
phone applications (on android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93-107.
Springer, Heidelberg (2011)

8. Wang, Y., Hariharan, S., Zhao, C., Liu, J., Du, W.: Compac: enforce component-
level access control in android. In: Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy (2014)

9. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich
application-centric security in android. In: Annual Computer Security Applica-
tions Conference (2009)

10. Bugiel, S., Heuser, S., Sadegh, A.R.: Flexible and fine-grained mandatory access
control on android for diverse security and privacy policies. In: 22nd USENIX
Security Symposium (USENIX Security 2013) (2013)

11. Smalley, S., Craig, R.: Security enhanced (SE) android: bringing flexible mac to
android. In: NDSS (2013)

12. Davis, B., Sanders, B., Khodaverdian, A., Chen, H.: I-arm-droid: a rewriting frame-
work for in-app reference monitors for android applications. In: Proceedings of the
Mobile Security Technologies 2012, MOST 2012. IEEE (2012)

http://bgr.com/2014/07/31/android-vs-ios-vs-windows-phone-vs-blackberry/
http://bgr.com/2014/07/31/android-vs-ios-vs-windows-phone-vs-blackberry/
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://www.androidpolice.com/2013/07/25/app-ops-android-4--3s/hidden-app-permission-manager/-control-permissions-for/-individual-apps/
http://www.androidpolice.com/2013/07/25/app-ops-android-4--3s/hidden-app-permission-manager/-control-permissions-for/-individual-apps/
http://www.phonearena.com/news/App-Ops-removed-by-Google-in-Android-4.4.2-update_id50340/
http://www.phonearena.com/news/App-Ops-removed-by-Google-in-Android-4.4.2-update_id50340/

268

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.
23.

X. Wang et al.

Davis, B., Chen, H.: RetroSkeleton: retrofitting android apps. In: Proceeding of
the 11th Annual International Conference on Mobile Systems, Applications, and
Services (2013)

Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: App-
Guard — enforcing user requirements on android apps. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 543-548. Springer,
Heidelberg (2013)

Xu, R., Saidi, H., Anderson, R.: Aurasium: practical policy enforcement for android
applications. In: Proceedings of the 21st USENIX Conference on Security Sympo-
sium (2012)

Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S.,
Millstein, T.: Dr. Android and Mr. Hide: fine-grained permissions in android appli-
cations. In: Proceedings of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (2012)

Hao, H., Singh, V., Du, W.: On the effectiveness of API-level access control using
bytecode rewriting in android. In: Proceedings of the 8th ACM SIGSAC Sympo-
sium on Information, Computer and Communications Security (2013)

Hao, S., Li, D., Halfond, W.G., Govindan, R.: SIF: a selective instrumentation
framework for mobile applications. In: Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services (2013)

Kernel probes. http://sourceware.org/systemtap/kprobes/

Ftrace. http://elinux.org/Ftrace

Russello, G., Jimenez, A.B., Naderi, H., van der Mark, W.: FireDroid: hardening
security in almost-stock android. In: Proceedings of the 29th Annual Computer
Security Applications Conference (2013)

Wandoujia. http://www.wandoujia.com/

Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you're looking for: retrofitting android to protect data from imperious applications.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS 2011 (2011)

http://sourceware.org/systemtap/kprobes/
http://elinux.org/Ftrace
http://www.wandoujia.com/

	Preface
	Organization
	Contents
	RSA Security

	General Bounds for Small Inverse Problems and Its Applications to Multi-Prime RSA
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Organizations

	2 Preliminaries
	2.1 The LLL Algorithm
	2.2 Howgrave-Graham's Lemma

	3 Previous Lattice Constructions to Solve SIP
	4 New Lattice Constructions to Solve SIP
	5 On the Security of Multi-Prime RSA
	6 Conclusion
	References

	On the Security of Distributed Multiprime RSA
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Protocol for Two Players with a Three-Prime Modulus
	3.1 Protocol Steps
	3.2 The Protocol
	3.3 Passive Security of the Protocol

	4 Four-Prime Distributed RSA
	4.1 Security of Four-Prime Distributed RSA
	4.2 Efficiency of Four-Prime Distributed RSA

	5 Implementation Results
	6 Security of the M-RSA Trapdoor Permutation
	7 Security of Multiprime PSS-RSA Signatures
	7.1 Signing with PSS

	8 Security of Multi-Prime OAEP-RSA Encryption
	References

	Digital Signature
	Formal Modeling of Random Oracle Programmability and Verification of Signature Unforgeability Using Task-PIOAs
	1 Introduction
	1.1 Our Contribution
	1.2 Our Approach

	2 Preliminaries
	2.1 Task-PIOA Framework
	2.2 Security Notion of Signature Schemes
	2.3 Trapdoor One-Way Permutation and FDH Signature

	3 Formulation of EUF-CMA for FDH Signature
	3.1 Ideal System IS
	3.2 Real System RS

	4 Security Analysis
	4.1 Construction of Simulator SSim
	4.2 Construction of Intermediate System Int
	4.3 Proof of RS neg,pt Int
	4.4 Proof of Int neg,pt SIS
	4.5 Conclusion of Proof

	References

	Algebraic Cryptanalysis of Yasuda, Takagi and Sakurai's Signature Scheme
	1 Introduction
	2 Yasuda, Takagi and Sakurai's Signature Scheme
	3 Our Expression of YTS' Public Map
	4 First Attack
	4.1 Finding an Invariant Decomposition of Fqn2
	4.2 Finding the Desired Bases
	4.3 Our First Algorithm

	5 Second Attack
	6 Comparison with Y. Hashimoto's Attack
	7 Conclusion
	References

	Public Key Cryptography
	Discrete Logarithms for Torsion Points on Elliptic Curve of Embedding Degree 1
	1 Introduction
	2 Fundamentals
	2.1 Elliptic Curve, Its Order, and Frobenius Map
	2.2 Twists and Skew Frobenius map
	2.3 Pairing--Friendly Elliptic Curve of Embedding Degree k>1
	2.4 Conventional Researches

	3 Fully Transitive Representation
	3.1 Variants of r--torsion Groups
	3.2 Irreducibility of fd(d)
	3.3 Arithmetic Operations
	3.4 A Proposal of Discrete Logarithm on the Torsion Group

	4 How to Construct a Fully Transitive Torsion Group
	4.1 Case of Ed(Fp)[r]

	5 Conclusion and Future Works
	A Torsion Structure When n(r+1)
	B r(pl-1), l=1 or 2
	C Proof of td-18mu(mod6mur)
	References

	Efficient Key Dependent Message Security Amplification Against Chosen Ciphertext Attacks
	1 Introduction
	2 Preliminaries
	2.1 Public Key Encryption
	2.2 Garbling Scheme
	2.3 Universal One-Way Hash Function

	3 KDM Amplification for Chosen Ciphertext Security
	4 Comparison
	A How to Obtain a Projection-KDM-CCA Secure Scheme
	References

	A Fast Phase-based Enumeration Algorithm for SVP Challenge Through y-Sparse Representations of Short Lattice Vectors
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 y-Sparse Representations of Short Lattice Vectors

	3 y-Phase: Some Interesting Observations
	4 A Phase-Based Enumeration Algorithm for SVP Challenge
	4.1 Overview
	4.2 PHASEENUMERATION() and PHASEENUMERATIONBOTTOM()

	5 Experimental Results
	6 Conclusion
	7 Future Work
	References

	Block Ciphers
	How Much Can Complexity of Linear Cryptanalysis Be Reduced?
	1 Introduction
	2 Preliminaries
	2.1 Matsui's Algorithm 2
	2.2 Computation with FFT

	3 Optimization of Implementation of Linear Cryptanalysis
	3.1 Attack with (r-2)-round Linear Approximation
	3.2 Method 1 - Vectorized Computation of Matsui's Algorithm 2
	3.3 Method 2 - Computation with FWHT
	3.4 Comparison of the Two Methods

	4 Reducing Data Complexity of Attack on FEAL-8X
	4.1 FEAL-8X
	4.2 Attack Outline
	4.3 Attack with Six-Round Linear Approximation
	4.4 Recovery of the Remaining Subkeys
	4.5 Experimental Results

	5 Conclusion
	A Six-Round Linear Approximations
	References

	Format-Preserving Encryption Algorithms Using Families of Tweakable Blockciphers
	1 Introduction
	1.1 Format-Preserving Encryption
	1.2 Our Work
	1.3 Our Contribution
	1.4 Related Works
	1.5 Organization

	2 Specification
	2.1 Notations, Abbreviations, and Terminology
	2.2 The Structure of TBCs
	2.3 Round Function F
	2.4 Key Schedule
	2.5 Tweak Schedule

	3 Design Rationale
	3.1 Design Based on Dedicated Tweakable Blockciphers
	3.2 Tweakable Blockciphers of Variable Block-Lengths
	3.3 Tweakable Feistel Scheme
	3.4 Round Functions
	3.5 Tweak Schedule
	3.6 Key Schedule

	4 Security
	4.1 Security Against Conventional Attacks
	4.2 Provable Security
	4.3 Other Considerations

	5 Performance
	6 Conclusive Remarks and Future Works
	A Equivalent Tweak Analysis
	B Bound of Differential Probability for Truncated KSP-KSP Functions
	C IND-CTPCA-2 Security of the 8-Round Tweakable Feistel Scheme
	C.1 3-Round Scheme
	C.2 6-Round Scheme
	C.3 8-Round Scheme

	D S-box Table, Matrix, and Round Constants
	References

	Bicliques with Minimal Data and Time Complexity for AES
	1 Introduction
	1.1 Our Contributions

	2 Biclique Key Recovery for AES
	2.1 Description of AES
	2.2 Balanced Bicliques
	2.3 Key Recovery

	3 Stars
	3.1 Stars from Independent Differentials

	4 Minimum Data Complexity Key Recovery for AES
	5 A Search Technique for Biclique Attacks on AES
	5.1 Enumerating Bicliques
	5.2 Searching for Key Recoveries
	5.3 Applications to Find Attacks with Minimal Data and Time Complexities

	6 Fastest Biclique Key Recovery with Less Than the Full Codebook of Data
	7 Fastest Biclique Key Recovery in AES with No Restriction on Data Complexity
	8 Improving Biclique Attack Complexities on AES Through Sieve-in-the-middle Process
	9 Conclusions
	References

	Fault Analysis on SIMON Family of Lightweight Block Ciphers
	1 Introduction
	2 Description of SIMON
	3 Previous Study
	4 Analysis of Non-linear Functions for SIMON Family
	4.1 Characteristics of the AND operation
	4.2 Deducing the Average Number of Fault Injections

	5 Attack Method
	5.1 Attack Assumptions
	5.2 Attack Procedures

	6 Simulation Results for SIMON 128/128
	7 Conclusions
	References

	Network Security
	A Clustering Approach for Privacy-Preserving in Social Networks
	1 Introduction
	2 Social Network Privacy Model
	3 SaNGreeA
	4 MASN
	4.1 The Algorithm
	4.2 Measure of Preserving Sensitive Attributes

	5 Experiment Results
	6 Conclusions and Future Work
	References

	Securely Solving Classical Network Flow Problems
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works
	1.3 Overview

	2 Preliminaries
	2.1 Security
	2.2 Notation
	2.3 On Network Flows and Matrix Representation

	3 Dijkstra's Algorithm
	4 Minimum Mean Cycle Problem
	5 Privacy-Preserving Minimum Mean Cycle Solution
	6 Minimum Cost Flow Problem
	7 Privacy-Preserving Minimum-Cost Flow Problem
	8 Computational Experiments
	8.1 Shortest Path Problem
	8.2 Minimum Flow Problem

	9 Conclusions and Future Work
	References

	Remote IP Protection Using Timing Channels
	1 Introduction
	2 Related Work
	3 Watermarking Through Timing Channels
	3.1 The Adversary Model
	3.2 The Timing Channel
	3.3 Authorship Watermarks
	3.4 Fingerprint Watermarks
	3.5 Security Analysis and Implementation Considerations

	4 Experimental Results with an FPGA Implementation
	4.1 Image Binarization Circuit
	4.2 Establishing the Timing Channel
	4.3 Circuit Watermarking
	4.4 Timing Analysis for Watermark Recognition

	5 Conclusion
	References

	Mobile Security
	Detecting Camouflaged Applications on Mobile Application Markets
	1 Introduction
	2 Problem Definition
	3 Background
	3.1 Information Retrieval Systems
	3.2 Repackaging and Code-Based Detectors

	4 A Framework for Detecting Camouflaged Applications
	4.1 Crawling
	4.2 Indexing
	4.3 Querying and Retrieving
	4.4 Detecting

	5 Experiment and Results
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	WrapDroid: Flexible and Fine-Grained Scheme Towards Regulating Behaviors of Android Apps
	1 Introduction
	2 Background
	2.1 App Code Structure
	2.2 App Launching

	3 System Design
	4 Implementation
	4.1 Process Creation Detector
	4.2 Java Method Enforcement
	4.3 System Call Enforcement
	4.4 Behaviour Policy Definition

	5 Performance Evaluation
	5.1 Effectiveness Evaluation
	5.2 App Running Efficiency
	5.3 App Launching Efficiency

	6 Related Work
	7 Conclusions and Future Work
	References

	Hash Functions
	A Collision Attack on a Double-Block-Length Compression Function Instantiated with Round-Reduced AES-256
	1 Introduction
	2 Preliminaries
	2.1 AES

	3 Collision Attack on DBL Compression Function Instantiated with Round-Reduced AES-256
	4 Collision Attack on F with 6-Round AES-256
	4.1 Conditions on the Round Key K2

	5 Collision Attack on F with 8-Round AES-256
	5.1 Algorithm to Connect Two Inbound Phases
	5.2 Conditions on the Round Key K5

	6 Collision Attack on F with 9-Round AES-256
	7 Conclusion
	A Example of Collision for f0 Instantiated with 6-Round AES-256
	References

	LSH: A New Fast Secure Hash Function Family
	1 Introduction
	1.1 Background and Motivation
	1.2 Design Approach
	1.3 Hash Function Family LSH

	2 Specification
	2.1 Definitions, Notation and Conventions
	2.2 Hash Structure
	2.3 Compression Function
	2.4 Initialization Vector Generation

	3 Design Rationale
	3.1 Hash Structure
	3.2 Compression Function

	4 Security Analysis
	4.1 Security in the Ideal Cipher Model
	4.2 Collision Security
	4.3 (Second-)Preimage Attacks
	4.4 Distinguishers and Other Attacks

	5 Software Implementation
	5.1 Parallelism
	5.2 Performance Results on Several Platforms
	5.3 Comparison with SHA-2 and the SHA-3 Competition Finalists

	6 Hardware Implementation
	A Differential Characteristics for Collision Attack
	References

	Information Hiding and Efficiency
	Lossless Data Hiding for Binary Document Images Using n-Pairs Pattern
	1 Introduction
	2 Histogram Modification Method
	3 Our Proposed n-Pair Pattern Scheme
	3.1 n-Pair Pattern Basic
	3.2 Embedding Procedure
	3.3 Extracting Procedure
	3.4 Computational Complexity

	4 Experimental Results
	5 Conclusions
	References

	Montgomery Modular Multiplication on ARM-NEON Revisited
	1 Introduction
	2 Previous Work
	3 Proposed Method
	3.1 Cascade Operand Scanning Multiplication for SIMD
	3.2 Coarsely Integrated Cascade Operand Scanning Multiplication for SIMD
	3.3 Requirements for Pipeline

	4 Results
	4.1 Target Platforms
	4.2 Evaluation

	5 Conclusions
	References

	A Fair and Efficient Mutual Private Set Intersection Protocol from a Two-Way Oblivious Pseudorandom Function
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Assumptions
	2.2 Homomorphic Encryption [3]
	2.3 Verifiable Encryption [3]
	2.4 Zero-Knowledge Proof of Knowledge [1]

	3 Protocol
	3.1 The mOPRF
	3.2 The mPSI

	4 Security
	4.1 Security of mOPRF

	5 Conclusion
	References

	Cryptographic Protocol
	Security Analysis of Polynomial Interpolation-Based Distributed Oblivious Transfer Protocols
	1 Introduction
	2 Preliminaries
	2.1 Notations and Definitions
	2.2 Linear Combination of Two Secrets
	2.3 Linear Combination of Secrets

	3 Polynomial Interpolation-Based DOT Protocols
	4 Weaknesses of Some DOT Protocols
	4.1 Protocols Insecure Against Curious Servers
	4.2 Protocols Insecure Against a Greedy Receiver

	5 A More Robust Protocol
	5.1 First Improvement
	5.2 Second Improvement
	5.3 Third Improvement

	6 Conclusion
	A Characteristics of Some DOT Protocols
	A.1 Naor and Pinkas's DOT [8]
	A.2 Blundo Et Al.'s DOT [2]
	A.3 Blundo Et Al.'s DOT [3]
	A.4 Nikov Et Al.'s DOT [9]
	A.5 Beimel Et Al.'s DOT [1]

	B Example of Insecurity in Blundo et al.'s DOT Protocol
	References

	Compact and Efficient UC Commitments Under Atomic-Exchanges
	1 Introduction
	2 Hardness Assumptions
	3 UC Functionalities
	3.1 The Atomic Setup Functionality
	3.2 The Commitment Functionality

	4 Compact UC Commitments
	4.1 A Compact Scheme for FLCOM
	4.2 Key Setup Block
	4.3 The Extractable Commitment Block
	4.4 The Equivocable Opening Block
	4.5 UC Security of the Compact Scheme

	5 Instantiated Compact Scheme
	6 Efficiency
	7 Conclusions
	A Extensions
	A.1 A Variant Based on ag-DDHGen
	A.2 Towards FMCOM

	References

	Issuer-Free Adaptive Oblivious Transfer with Access Policy
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Pairing and Complexity Assumptions
	2.2 Zero-Knowledge Proof of Knowledge
	2.3 Linear Secret Sharing Schemes (LSSS) [1]
	2.4 Formal Model and Security Notion

	3 The AOT-AP
	4 Security Analysis
	5 Comparison
	6 Conclusion
	A Our CP-ABE
	References

	Side-Channel Attacks
	Memory Address Side-Channel Analysis on Exponentiation
	1 Introduction
	2 Preliminaries and Background
	2.1 Computation of Exponentiation
	2.2 Software Implementation of Montgomery Multiplication and Horizontal Correlation Analysis
	2.3 Memory Address Side-Channel Analysis

	3 Memory Address SCA by Folding Power Trace
	3.1 Analysis Targeting the Address of First Operand
	3.2 Analysis Targeting the Address of Second Operand
	3.3 Analysis Targeting the Address Storing the Result
	3.4 Analysis Without the Knowledge of Address

	4 Countermeasures Against Memory Address SCA
	5 Conclusions
	References

	Mutant Differential Fault Analysis of Trivium MDFA
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Algebraic Cryptanalysis
	2.2 Differential Fault Analysis (DFA)
	2.3 Notation

	3 Algebraic Representation
	4 Generating Mutants
	5 Experimental Results
	6 Conclusion
	References

	Author Index

