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Abstract
Recent years have witnessed the rise of security risks of

libraries integrated in mobile apps, which are reported to
steal private user data from the host apps and the app backend
servers. Their security implications, however, have never been
fully understood. In our research, we brought to light a new
attack vector long been ignored yet with serious privacy im-
pacts – malicious libraries strategically target other vendors’
SDKs integrated in the same host app to harvest private user
data (e.g., Facebook’s user profile). Using a methodology that
incorporates semantic analysis on an SDK’s Terms of Ser-
vices (ToS, which describes restricted data access and sharing
policies) and code analysis on cross-library interactions, we
were able to investigate 1.3 million Google Play apps and the
ToSes from 40 highly-popular SDKs, leading to the discovery
of 42 distinct libraries stealthily harvesting data from 16 pop-
ular SDKs, which affect more than 19K apps with a total of 9
billion downloads. Our study further sheds light on the under-
ground ecosystem behind such library-based data harvesting
(e.g., monetary incentives for SDK integration), their unique
strategies (e.g., hiding data in crash reports and using C2
server to schedule data exfiltration) and significant impacts.

1 Introduction

Mobile apps today extensively incorporate third-party li-
braries (e.g., analytics, advertising, app monetization, or
single-sign-on SDK), which enriches their functionalities but
also brings in security risks. It has been reported that mali-
cious SDKs stealthily collect private user data from the device
running their host app [53, 73, 74, 78] (e.g., IMEI, GPS loca-
tion, phone number, MAC address, SIM card ID, Android ID,
etc.), the server or the cloud supporting the app [69]. With
significance of such leaks, the security implications of library
integration have yet been fully revealed: it is less clear whether
a malicious library could endanger a user’s sensitive infor-
mation from other data sources, those not under the direct
control of the affected app.
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Figure 1: Workflow of cross-library data harvesting (XLDH)

Cross-library data harvesting. In our research, we discov-
ered a type of data harvesting libraries never reported before,
which strategically target the SDKs from other vendors also
integrated by the host app. These SDKs carry sensitive user
data. For example, the Facebook SDK extensively used by
apps for single sign-on [34] also manages the information
such as a user’s name, birthday, locations she went to, so-
cial, health, and political groups she follows. The data could
be exposed to the malicious library hosted by the same app
integrating the Facebook SDK. Figure 1 illustrates such a
malicious library, which first checks the presence of the Face-
book SDK in its host app, and if so, invokes the Facebook
API to acquire the user’s Facebook session token and data.
Since both the malicious library and the victim SDK co-exist
within the same app, this invocation is not mediated. Given
the wide deployment of the Facebook Login SDK (in more
than 16% of the apps on Google Play [5]), the risk of such
a data leak is significant. We call this attack Cross-Library
Data Harvesting (XLDH).1

Beyond its threat to personal privacy, malicious data har-
vesting can also have serious social implications. A prominent
example is the Cambridge Analytica scandal [17], in which
the personal data of millions of Facebook users (profiles, page
likes, current city, News Feed, etc. – enough to create psy-
chographic profiles of the users) were collected and utilized
for malicious political advertising [17]. XLDH also provides
a new avenue for such political profiling and promotion, as
discovered in our research (Section 5.4). Despite the impor-
tance of the problem, little has been done so far to understand

1In this paper, the terms “SDK" and “library" always refer to those de-
veloped by third-parties, i.e., vendors other than the host app vendor or OS
vendor; also, we refer to “SDK" as the victim and “library" as a general term.



XLDH, not to mention any attempt to address this new security
and privacy risk.

Finding XLDH in the wild. In this paper, we report the first
study on XLDH on Android, aiming to understand its privacy
and social impacts, underground ecosystem and challenges
in controlling the threat. To this end, we developed a new, au-
tomatic methodology called XFinder to identify malicious li-
braries integrated in real-world apps on Google Play. Our idea
is to discover restricted data managed by the SDKs and their
third-party data sharing policies, which describes whether
and how restricted data can be shared with or collected by
other libraries. We automatically extract those policies from
the terms of service (ToS, a.k.a., terms of use, terms and con-
ditions) released by the SDK vendors, and then analyze the
code of each integrated library to find out whether it makes
any access to the SDK’s data in violation of these policies.
This turns out to be nontrivial due to the challenges in analyz-
ing ToS to recover its semantics and evaluating apps to find
cross-library interactions.

More specifically, unlike app privacy policies that protect
known sensitive content (e.g., address, contact, etc.) and there-
fore can be identified by existing privacy policy analyzer such
as Polisis [57], ToS describes restricted data whose security or
privacy implications can only be determined from the context
of their usage. Examples include security-critical data such
as password and token, and SDK-specific sensitive data such
as utdid used by Alibaba for identifying user devices [2],
page likes, health or political groups of a user recorded by
Facebook, and education and project information maintained
by LinkedIn [18]. More challenging is to recover the data
sharing policies from ToS that specify the restrictions on
collecting and sharing different data items, which tends to
be complicated. For example, Google allows developers to
access advertising ID or device identifier (e.g., ssaid, mac ad-
dress, imei), but restricts the collection of these two data item
simultaneously; also Facebook user’s page likes, timeline,
etc., are open to the apps certified by Facebook [15], but not
to other parties (including third-party libraries) [55], while
Facebook user ID and password are not allowed to be sent
out to the Internet by any party. Our research shows that ex-
isting techniques like Polisis [57] and PolicyLint [45] cannot
be directly adopted for ToS analysis (see the evaluation in
Section 3.2).

To address these challenges, XFinder utilizes a semantic
analysis tuned towards the unique features of ToS, which
leverages natural language processing techniques to capture
sensitive data items and to recover complicated policies (Sec-
tion 3.2). Further, our code analyzer module in XFinder is de-
signed to handle potential evasion tricks played by malicious
libraries when evaluating its interactions with a target SDK
(Section 3.3). Our experiment shows that XFinder achieved a
high precision of 86% and successfully detected 42 malicious
libraries from more than one million Android apps.

Measurement and discoveries. From 1.3 million Google
Play apps analyzed in our research, we are surprised to find
the significant impacts of the new threat. More specifically,
we discovered 42 distinct libraries that stealthily harvest data
from third-party SDKs without a user consent. These libraries
have been integrated into more than 19K apps, with a total of
9 billion downloads. The data harvested are highly sensitive,
including access tokens, profile photos, and friend lists (see
Section 5). As an example, OneAudience, a library integrated
in more than 1,738 apps with more than 100 million users,
collects users’ private data from Facebook and Twitter SDKs.
Based on a press release from Nielsen [29], OneAudience
shared mobile user data with Nielsen – a marketing research
firm, and the data can be used by Nielsen’s customers for
political marketing purpose, among other marketing usages.
Hence, we suspect that the data harvesting campaign might
lead to a Cambridge-Analytica-like political scandal if they
were taken advantage of by the adversary. Although the cam-
paign has been stopped after we reported it to Facebook (see
below), already millions of Facebook users’ data have been
exposed, since the library has been continuously gathering
user data, once per hour on both Android and iOS since 2014.

Also interesting is the ecosystem behind XLDH, which in-
cludes library distribution, stealthy data exfiltration channel,
and data monetization. In particular, XLDH vendors are found
to distribute their libraries through multiple channels, includ-
ing colluding with free app building services, integrating into
popular libraries, and offering app monetization (Section 5.4).
For example, app monetization is used to attract app develop-
ers to integrate problematic libraries into their apps: app de-
velopers that integrate OneAudience and Mobiburn are paid
$0.015 to $0.03 per app install. Furthermore, we revealed the
techniques used by malicious libraries that made their data
harvesting activities more stealthy and harder to detect, such
as the abuse of Java reflection technique (see Section 3.3).

Our study also sheds light on the challenges in eliminat-
ing the XLDH risk. We found that although VirusTotal and
Google Play are able to detect the libraries collecting data
from mobile devices (such as IMEI, contact), they all failed to
detect XLDH libraries and the apps integrating them, possibly
due to the challenges in determining third-party data sharing
policies and non-compliance with the policies. This has been
addressed by XFinder. We reported our findings to affected
parties, including Facebook, Twitter, Google Play and others,
who are all serious about this new risk and expressed grati-
tude for our help with bounty programs. Google asked the
developers of affected apps to remove the malicious libraries,
or drop these apps to control the risk. Facebook and Twitter
have taken legal actions to take down OneAudience, a XLDH
library owned by Bridge, a digital marketing company.

Contributions. We summarize the contributions as follows.
• Our study brings to light a new attack vector that has long
been ignored, yet with serious privacy implications: malicious
libraries aiming at third-party SDKs integrated in the same



apps to harvest private user data. Our findings demonstrate the
significant privacy and social impacts of this new threat. Our
works also help better understand the underground ecosystem
behind it, and the challenges in controlling the risk.
• Our study has been made possible by a novel methodol-
ogy that automatically identifies XLDH from over a million
Android apps, through semantic analysis on ToS and code
analysis on cross-library interactions.
•We release the dataset used in this research and our source
code for the automatic ToS analysis online [39].

2 Background

Cross-library API calls. Like an app that calls functions
of a library, libraries in an app naturally can invoke the
functions of another library. On Android, this is typically
done through first explicitly importing the package name
of the callee class (in Java), and then invoking the target
function through the callee class’ instance. Further, Java
features a technique called reflection [26]. that allows func-
tion invocation in a more flexible manner. As illustrated in
Figure 4a, to invoke a function getCurrentAccessToken
in the Facebook library, one can first obtain a class ob-
ject through Java reflection API Class.forName, by pro-
viding the class name (com.facebook.AccessToken); then
through another reflection API getDeclaredMethod, one can
obtain a method object using the name of the target func-
tion getCurrentAccessToken; last, calling reflection API
invoke on the method object, one can invoke the target func-
tion. In our research, we observed that XLDH libraries often
leverage reflection to call victim libraries, likely for making
the behaviors more stealthy. Note that Android provides a
coarse-grained sandbox and permission model to regulate
third-party libraries, allowing them to operate with the same
permissions as their host apps [4, 76]. In particular, there
is no security boundary between libraries within the same
app, allowing one library to access another (e.g., invoking
functions) without restrictions.

SDK terms of service. Term of service (ToS) is an SDK
developer document that lays out terms, conditions, require-
ments, and clauses associated with the use of a mobile SDK,
e.g. copyright protection, accounts termination in the cases of
abuses, data usage and management, etc. Note that in addition
to the ToS for developers, an SDK vendor (e.g., Facebook and
Twitter) may also have a ToS for regular users, such as [16],
which is outside the scope of our study. In our research, we
manually collected 40 ToSes from SDK vendors’ developer
websites to investigate the XLDH risks.

Unlike privacy policy, which aims at informing end-users
about collection and use of personal data (e.g., name, email
address, mailing address, birthday, IP address), ToS specifies
rules and guidelines for developers who uses an SDK, as illus-
trated in Figure 2. Also, data protected under privacy policy
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Figure 2: The dependency parsing tree and constituency pars-
ing tree of the sentence: “you may not associate the Adver-
tising ID with any device identifier without consent from the
end user."

is different from that covered by ToS. The former is usually
“personal information” (e.g., name, email address, mailing ad-
dress), as guided by laws (e.g., GDPR, CalOPPA [48]). The
latter also prevents the abuse of security-critical data (e.g.,
password and token) and SDK-specific data (e.g., API keys,
access credentials). Table 1 shows the data items protected by
the ToS of Twitter, Facebook and Google. We can see that 21
data items in the ToSes are SDK-specific and not mentioned
by the privacy policies.

In our research, we found that the state-of-the-art privacy
policy analyzer (e.g., Polisis [57]) cannot effectively analyze
ToS to recover the content about sensitive data sharing policy
(see Section 3.2), possibly due to the different grammatical
structures of ToS (for addressing to different audience and
describing different data items and rules) than those appearing
in common privacy policy corpora.

Natural language processing. In our research, we leverage
Natural language process (NLP) to automatically extract third-
party sharing policies for sensitive data from SDK ToS. Below
we briefly introduce the NLP techniques used in our research.

• Named entity recognition. Named entity recognition (NER)
is a technique that locates named entities mentioned in un-
structured text and classifies them into pre-defined categories
such as person names, organizations, locations. The state-of-
the-art NER tools such as Stanford NER and Spacy NER can
achieve a 95% accuracy on open-domain corpora to recog-
nize person names, organizations, locations. However, NER
systems are known to be brittle, highly domain-specific —
those designed for one domain hardly work well on the other
domain [61]. A direct use of the state-of-the-art tools like
Stanford NER [66] does not work, because the common pre-
defined categories (names, organizations, locations) are not
suitable for our task. In our study, we tailor named entity
recognition techniques to identify sensitive data, which is
protected by third-party sharing policies.



Table 1: Examples of data items protected by the ToS of Facebook, Twitter, and Pinterest

SDK Term of Service
Facebook access token, access credentials, Friend data, Facebook user IDs, trademarks, PSIDs(Page-scoped user IDs), Marketplace Lead Data

Twitter API keys, access credentials, Twitter Content, Twitter passwords, Tweet IDs, Direct Message IDs, user IDs, Periscope Broadcasts
Pinterest Wordmark, image, Ad Data, user ID and campaign reporting, secret boards

• Constituency parsing and dependency parsing. Con-
stituency parsing and dependency parsing are NLP techniques
to analyze a sentence’s syntactic structure. Constituency pars-
ing breaks a sentence into sub-phrases and displays its syn-
tactic structure using context-free grammar, while depen-
dency parsing analyzes the grammatical relations between
words such as subject-verb (SBV), verb-object (VOB), at-
tribute (ATT), adverbial (ADV), coordinate (COO) and oth-
ers [11]. Figure 2 illustrates the constituency parsing tree and
dependency parsing tree of a sentence. In the constituency
parsing tree, non-terminals are types of phrases and the ter-
minals are the words in the sentence. For instance, as shown
in the figure 2b , NP is a non-terminal node that represents
a noun phrase and connects three child nodes (the (DT), ad-
vertising (NNP), ID (NNP)). Here, DT means determiner and
NNP means a noun in a singular phrase [30]. By comparison,
the dependency parsing tree is represented as a rooted parsing
tree (see Figure 2a). At the center of the tree is the verb of
a clause structure, which is linked, directly or indirectly, by
other linguistic units. This unit can either be a single word
or a noun phase that merged by the parser’s built-in phase
merge API phrase.merge [28]. The state-of-the-art depen-
dency and constituency parser (e.g., Stanford parser [49], Al-
lenNLP [56]) can achieve over 90% accuracy in syntactic
structure discovery from a sentence. In our study, we leverage
both dependency and constituency parsing trees generated
from sentences in ToS to recover the semantics of third-party
sharing policies in SDK ToS.

• word2vec. Word2vec [67] is a word embedding technique
that maps text (words or phrases) to numerical vectors. Such a
mapping can be done in different ways, e.g., using the contin-
ual bag-of-words model [8] or the skip-gram technique [35]
to analyze the context in which the words show up. Such a
vector representation ensures that synonyms are given similar
vectors and antonyms are mapped to different vectors. In our
study, we build a customized word embedding model for data
sharing policies to measure the similarity of words in this
domain, as elaborated in Section 3.4.

Threat model. We consider an adversary who spreads mali-
cious libraries that harvests private user data from third-party
SDKs hosted by the same mobile apps. For this purpose, the
adversary often offers appealing functionalities or monetary
incentives to app developers for integrating a malicious li-
brary into their apps. In our study, victim SDKs in an app are
those neither owned by the app vendor, nor provided by AOSP
(Android Open Source Project) [42] – the official Android
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Figure 3: Overview of XFinder

version not customized by original equipment manufacturers
(OEMs). In this regard and for the best understanding of the
threats, libraries developed by Google but not on AOSP are
also studied in our research.

3 Methodology

In this section, we elaborate on the design and implementation
of XFinder, a methodology for discovering XLDH from real-
world Android apps.

3.1 Overview

Architecture. As mentioned earlier, our approach relies on
the extraction of data sharing policies from ToS and analy-
sis of policy compliance during a library’s interactions with
other SDKs within the same app. In particular, the design
of XFinder includes three major components, Data Policy
Analyzer (DPA), Meta-DB Constructor, and Cross-library
Analyzer (XLA), as outlined in Figure 3.

DPA takes as its input a set of SDK ToSes associated with
popular SDKs, which are widely deployed in Android apps.
These ToSes are processed by DPA to output the SDKs’ data
sharing policies (Section 3.2). The restricted data items gov-
erned by those data sharing policies, along with the corre-
sponding SDK APIs that return those data items, are recorded
in a Meta-DB (Section 3.4). To identify the leaks of those
restricted data due to XLDH activities, XLA inspects the de-



compiled code of an app to find all cross-library invocations
on the sensitive SDK APIs (those that return the restricted
data, as recorded in the Meta-DB); XLA then tracks down
the data flow of their return value to identify an exfiltration
(Section 3.3). The cross-library interactions discovered in this
way are then checked against the data sharing policies that
DPA extracted, for finding policy violations.

Example. Here we use a real example to explain how XFinder
works. Specifically, XFinder inspected the app "Columns
Gembira" (com.frzgame.columns), which includes both an
XLDH library Mobiburn and the Facebook SDK. In ana-
lyzing the app, XLA first scans all function calls to find
out cross-library API calls, those with caller classes and
callee classes in different libraries. For example, the class
com.mobiburn.e.h in Mobiburn library is found to invoke
function com.facebook.AccessToken.getToken() in the
Facebook SDK, as shown in Figure 4a. Then XLA looks
up the meta-DB to determine the return value of the func-
tion, which is the user’s Facebook session token, and further
tracks down the data flow using taint tracking. In the end, we
found that the token is used to fetch a user’s Facebook profile
data (ID, name, gender, email, locale, link, etc.) in function
com.mobiburn.e.h.getFbProfile(), and all the data in-
cluding the token are sent out to the server of Mobiburn. (see
Figure 4b)

XFinder then checks whether such a data practice violates
the data sharing policies specified in Facebook ToS. More
specifically, given the statement of “keep private your secret
key and access tokens" in Facebook’s ToS, DPA automati-
cally extracted the data sharing policy (access token, condi-
tion:null), which indicates that access token is the restricted
data item and it cannot be shared with and transferred to a
third-party under any conditions (i.e., condition:null). Hence,
the XLDH of the Mobiburn library violates the data sharing
policy of Facebook SDK, and thus, XFinder flags Mobiburn
as an XLDH library.

Dataset summary. We summarize the dataset produced and
consumed by each stage of our pipeline as below. Table 2
shows the datasets used in our study.

In total, we collected 1.3M Android apps (Dg) from Google
Play for XLDH library detection. More specifically, the
dataset was collected based on a publicly-available app
list (AndroZoo [43]), using an open-source Google Play
crawler [23], which has been widely used in previous research
such as [87]. We used the default settings of the crawler to
download the apps from Google Play from Oct. 03 to Oct. 15,
2019. In total, we successfully collected 93.12% of the apps
on the list (1,341,148/1,440,160) from Google Play. Among
them, we identified top 200 SDKs widely integrated into real-
world apps (Section 3.4). After removing utility SDKs which
are not associated with sensitive data, we further gathered
ToSes for the remaining 40 SDKs from their vendor websites
(Ctos).

public class h {
public static String getAccessToken() {

Class[] param = new Class[0];
Class clz = Class.forName(

"com.facebook.AccessToken");
Method meth1 = clz.getDeclaredMethod(

"getCurrentAccessToken", param)
Object curToken = meth1.invoke(clz, null);
Method meth2 = clz.

getDeclaredMethod("getToken", param)
return meth2.invoke(curToken , null);}

public JSONObject getFbProfile(String token){
String uri = Uri.parse(

"https://graph.facebook.com/v2.10/me").
appendParam("accesstoken", token).
appendParam("fields","id,first_name,gender,
last_name,link,locale,name,timezone,
updated_time,verified,email");

HttpsURLConnection httpsURLConnection =
new URL(uri).openConnection();

return new JSONObject(httpsURLConnection.
getInputStream().readLine ());}

}

(a) Reading app users’ Facebook access token and profile

public class f{
public void a(){
JSONObject userData = new JSONObject();
userData.put("accessToken", getAccessToken());
userData.put("accountJson", getFbProfile());
...
HttpsURLConnection httpsURLConnection =

new URL(this.serverUri).openConnection();
DataOutputStream dataOutputStream =

httpsURLConnection.getOutputStream();
dataOutputStream.write(userData);
}

}

(b) Sending the Facebook token and profile to mobiburn server

Figure 4: Code of XLDH library com.mobiburn

After that, we bootstrapped our study by using DPA to auto-
matically extract 1,056 data sharing policies, associated with
1,215 restricted data objects from the 40 SDK ToSes (Sec-
tion 3.2). We constructed the Meta-DB (Section 3.4) which
recorded all 936 sensitive APIs of the SDKs that return re-
stricted data. Then, in XLA, we statically analyzed 1.3M An-
droid apps (Dg) to extract cross-library API calls (Section 3.3).
After filtering by Meta-DB, 1,934,874 of them are regarded
as sensitive. Given those sensitive API calls, we tracked their
data flows to check whether such flows are in compliance with
the SDK’s data sharing policies. In particular, for restricted
data not allowing access by a third-party or any party, we
consider the exfiltration of the data a violation of the ToS
and identify 15 XLDH libraries; For restricted data access re-
quiring user consent or complying with regulations, we check
whether such behavior was disclosed in the caller library’s
privacy policy (Cp), which revealed 27 XLDH libraries. In
total, our study reported 42 distinct XLDH libraries (4 manu-
ally found and 38 automatically detected) integrated in more
than 19K apps and targeting at 16 victim SDKs.



Table 2: Summary of datasets and corpora

Name Source Size Timestamp (yyyyMM) Usage
Dg Google Play 1.3M apps 201910 Detection

Ctos 40 victim SDK ToSes 8622 sentences 201910 Detection
Capi 40 victim SDK API specifications Documentations of 27K APIs 201910 Detection
Cp 73 XLDH library privacy policies 10K sentences 202006 Detection
Dha Historical Google Play apps 300K apps 2014-2019 Measurement
Dhl Historical XLDH library versions 42 XLDH libraries of 495 versions 2011-2019 Measurement

Table 3: The verbs related to data sharing policy

connect, associate, post, combine, lease, disclose, offer,
distribute, afford, share, send, deliver, disseminate, transport,

protect against, keep, proxy, request, track, aggregate, provide,
give, transfer, cache, transmit, get, seek, possess, accumulate,

convert, collect, use, store, gather, obtain, receive, access, save

3.2 Data Policy Analyzer

The goal of Data Policy Analyzer (DPA) is to extract third-
party data sharing policies from an SDK ToS, which describe
how restricted data items can be shared with or collected by
other libraries. Here we describe a data sharing policy as a
pair (ob ject,condition), where ob ject is the restricted data
item of the SDK, such as utdid, password, and condition is the
requirements and clauses for the operations on the restricted
data, which can be empty. For example, the policy statement
“the advertising identifier must not be associated with any
persistent device identifier without explicit consent of the
user", can be represented as (advertising ID and device ID,
user consent). Note that in our study, we focus on ToS data
sharing policies, and thus the subject of such a policy is the
library developers (and their libraries) that call the target SDK
and the operation on the restricted data is GET.

During the analysis, our approach first runs a NER model
to recover restricted data items. More specifically, the NER
is customized on the ToS corpora and the entity category of
restricted data items (e.g., utdid, password) using an efficient
constituent parsing technique. Then, based on the restricted
data items, we identify the sentences related to third-party
data sharing policies from the ToS. After that, we extract the
pair (ob ject,condition) from the data sharing policies using
restricted data as “anchors” to recognize the pattern of each
policy’s grammatical structures and to locate the condition on
data sharing. We elaborate on our methodology as follows.

Restricted data object recognition. As mentioned earlier,
identifying restricted data from an SDK ToS is an NER prob-
lem. Unfortunately, NER techniques today are known to be
highly domain-specific [63]: open-domain NER model does
not work well on the security corpora, as restricted data are
different from the common entity categories (e.g., location,
people, organization) whose annotated datasets are available.
In our study, we observe that restricted data in the SDK ToS

is often characterized by a long noun phrase (e.g., Google Ad-
vertising ID, Facebook password, Amazon purchase history)
covered by a single or multiple consecutive noun phrases in
the constituency tree (Figure 2) . Therefore we can utilize the
features of the constituency tree to help identify such a phrase
as an entity.

More specifically, we include the constituency tree of a
sentence as a feature, which enables our NER model to learn
that certain types of phrasal nodes, such as NPs, are more
likely to be entities, i.e., restricted data. Hence, we crafted
several features based on constituency parsing tree tags for
each word, which include a word’s tag, its parent tag, the
left and right siblings, the location of the word in the span
of NPs nodes. For example, as shown in Figure 2, the word
“advertising" in the NP span “the advertising ID" in has 5
features: its tag “NNP", its parent tag “NP", its left sibling
“DT: the", its right sibling “NNP: ID" and its position of 1
under the span. Such features help the model to learn and
inference similar long noun phrase (eg., “the Twitter ID").

In our implementation, we utilize AllenNLP constituency
parser [56] to generate the constituency tree related features
for each sentence. Then, we built these features into the state-
of-the-art conditional random fields (CRF) based NER model
- Stanford NER [66]. As these features are not built-in features
[37] in Stanford NER, we configure the feature variables of
them using the SeqClassifierFlags class, and then read the
feature set into the CoreLabel class. In addition, we updated
training data using SDK ToSes. Particularly, we manually
annotated 534 sentences from 6 SDK documents using IOB
encoding [25] to retrain the NER model.

To evaluate the model, we perform 10-fold cross validation
on the annotated sentences. Our result shows that by leverag-
ing constituency tree features, the model achieves a precision
of 95.2% and a recall of 90.8%. Compared with the model
without constituency tree features, our model shows a increase
of 1.3% and 2.1% for the precision and recall, respectively.
After that, the model was also evaluated on additional 103
randomly selected and manually annotated sentences from
two previously-unseen SDK ToSes, which yields a precision
of 88.2% and a recall of 90.4%.

Policy statement discovery. From each ToS, the analyzer
identifies the sentences describing how restricted data items
can be shared with or collected by other libraries. These sen-
tences are selected based on restricted data identified by the



aforementioned model, the subject (i.e., library developer)
and the operation (i.e., GET) they contain.

We first need to construct the keywords list associated with
data collection and sharing (e.g., use, collect, transfer, etc.).
For this purpose, we leverage the OPP-115 [86] and APP-
350 [87] datasets, which contain 46,259 manually annotated
privacy policy statements. Among them, 14,100 annotated
sentences are related to first-party collection and third-party
collection. After that, we use constituency parser [56] to rec-
ognize the verb in the verb phrases and further identify the
lemma of a verb from those sentences. In this way, we collect
38 keywords related to data collection and sharing as shown
in Table 3.

After that, we use this keywords list in Table 3 and the
restricted data to filter out the sentences irrelevant to data
sharing and collection policy. Specifically, after parsing the
HTML content of each ToS and splitting the text into sen-
tences, we run our NER model to find all statement sentences
that contain restricted data. Then we leverage dependency
parser [71] to locate the verb or nominal modifier of restricted
data. In particular, if (1) the dependency relationship between
them is the direct object (e.g., collect personal informa-
tion) or nominal modifier (e.g., the usage of personal in-
formation) and (2) such verb or nominal modifier is in the
keywords list, we will regard the sentence describing data
sharing and collection policy.

After this, we check that the sentence subject is not the
SDK itself but library developer. Specifically, we build a de-
pendency parsing tree to recognize the subject of a sentence.
We eliminate sentences with the “first-party" as the subject.
For example, the target SDK’s name (e.g., “Twitter", “Face-
book") and first-person plural (e.g., “we", “us"). Note that
for the sentences with an ambiguous subject reference (e.g.,
“it", “this", “that"), we run a co-reference resolution tool [56]
on the paragraph in which the sentence exists to identify the
subject.

Altogether, we gathered 1,056 sentences associated with
data sharing policy from 40 ToSes. By manually inspecting
200 sentences, we found that our method yields the recall of
89.3%. The miss-reported sentences are mainly due to wrong
dependency parsing results from underlying tools we use. For
example, “store non-public Twitter content" is parsed as a
noun phrase instead of verb-object phrase by [71].

Data sharing policy identification. To extract the pair
(ob ject,condition) from the policy statements of an SDK
ToS, our approach first uses a dependency parser [58] to trans-
form a sentence into a dependency parsing tree, which de-
scribes the grammatical connections between different words,
and then leverages the restricted data ob ject as known an-
chors to locate the condition by traversing the parsing tree.
Here we prune the dependency tree of the policy statement
into a subtree that represents the grammatical relation among
ob ject, condition and the operation (e.g., “transfer”, “use”).
This is because that the policy statement is usually long and

consists of noisy information, and the subtree is most relevant
to the understanding of the relation.

• Object identification. In our research, we observe ob ject in
the data sharing policy sometimes consists of more than one
restricted data, e.g., “Don’t collect usernames or passwords".
Hence, to extract the ob ject from each policy statement, we
first identify the restricted data d1,d2, ...,dn using the afore-
mentioned method, and then use dependency tree to determine
whether they have conjunctive relation and their coordinating
conjunction (a.k.a., CCONJ [32]) is “OR". If so, we recognize
them as n different objects.

Similarly, for the restricted data d1,d2, ...,dn are with
conjunctive relation but their coordinating conjunction
(a.k.a.,CCONJ [32]) is “AND", we recognize them as one
object. However, things get complicated when the policy state-
ment illustrates multiple objects can not GET at the same time,
e.g., Don’t associate user profiles with any mobile device
identifier. Here, we use specific verbs (e.g., associate with,
combine with, connect to) to identify this relationship. In this
way, we recognize them as one object, i.e., d1∧d2...∧dn.

In addition, we use the lexicosyntatic patterns discovered
in [45] to find the object hyponym and then use the specified
object hyponym in the policy tuple. For example, given the
pattern “X , for example, Y1, Y2,...Yn ”, where Y1, Y2,...Yn is
the hyponym of X , and the sentence “device identifier, for
example: ssaid, mac address, imei, etc", we will extract five
policies of “device identifier", “ssaid", “mac address" and
“imei".

• Condition extraction. By manually inspecting 1K sentences
from 10 SDK ToSes, we annotated 14 generic patterns (in
terms of dependency trees), which describe the grammatical
relation among ob ject, condition and the operation. The an-
notated pattern list is shown in Table 9. Then, we fed them into
the analyzer which utilizes these patterns to match the depen-
dency parsing trees of the policy statements, using the ob ject
and operation nodes as anchors. More specifically, given
a policy statement, we use the depth-first search algorithm,
which starts at ob ject and operation nodes, to extract all sub-
trees for pattern similarity comparison. Then we identify the
most similar subtree of a policy statement by calculating a
dependency tree edit distance between each subtree and the
patterns in Table 9. Here we define a dependency tree edit dis-
tance D(t1, t2) = min(o1,...,ok)∈O(t1,t2) ∑

k
i=1 oi, where, O(t1, t2)

is a set of tree edits (e.g., node or edge’s insertion, deletion
and substitution) that transform t1 to t2, and we consider t1
and t2 are equal when all node types and edge attributes are
matched. After that, we locate the condition node based on
the matched subtree.

For example, Figure 5a illustrates the dependency tree struc-
ture of the policy statement. In the tree, each edge has an
attribute dep that shows the dependency relationship between
nodes, and each node has an attribute type which indicates
whether it is ob ject, operation, or none of the above (other).
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Figure 5: A example of condition extraction with the pol-
icy statement “You must have legally valid consent from a
Member before you store that Member’s Profile Data"

The subtree which consists of all green nodes is the most
similar subtree with 0 edit distance to the pattern shown in
the Figure 5b Traversing the matched pattern, we can locate
condition node which is (have legally valid consent).

As the graph matching problem is NP-complete, the com-
putation time grows dramatically with the increase of node
and edge. In our implementation, to reduce the matching time,
when constructing subtrees using depth-first search, we define
the search depth which will not exceed twice of pattern length
and the threshold of edit distance’s threshold to be 3.

Discussion and evaluation. DPA recognized 1,215 pairs
(ob ject, condition) from 1,056 policy statements from 40
ToSes. We manually inspect all of the detected pairs based
on the relevant policy statements. The results show that our
method achieves a precision of 84.2%. However, still our
technique misses some cases. We acknowledge that the ef-
fectiveness of the method can increase with more annotated
sentences for pattern matching. In our research, to guarantee
the diversity of the annotated patterns, we design a sample
strategy for annotated sentence selection. Specifically, we
keep randomly sampling sentences for annotation until not
observing new patterns for continuous 200 sentences. In this
way, we annotated 14 patterns by inspecting 1K sentences
from 10 SDK ToSes. Another limitation is the capability to
process long sentences. Our method utilized the dependency
parsing trees of the sentences for condition extraction. How-
ever, the state-of-the-art dependency parser cannot maintain
its accuracy when sentences become too long.

Analyzing these 1,215 pairs of data sharing policies, we
found that most are from Facebook SDK (9.4%), followed by
Amazon (8.8%) and LinkedIn (7.3%). Also, 37 of them have
the object with more than one restricted data. We observe the
objects advertising ID and mobile device identifier always
co-occur (7 pairs), because the user-resettable advertising ID
will be personally identifiable when associated with mobile
device identifier, which is not privacy-compliant [9]. To un-
derstand the data sharing conditions, we manually analyzed
all of the recognized data sharing policies and categorized
them into five types: No access by any party, Requiring user
consents, No third-party access, Complying with regulations
(i.e., GDPR, CCPA, COPPA) and Others, as shown in Table
5. Note that 96% of the data sharing policy are with the first
four types of data sharing conditions. The Others type of data
sharing condition is rarely observed and sometimes associated
with some vaguely-described condition, such as “Only certain
application types can access.” In our policy compliance check
(see Section 3.3), we did not check the policy compliance re-
lated to this type of condition. We acknowledge that checking
those policies would allow for a more holistic view of XLDH
activities. However, doing so will require subjective analysis
of the vague and ambiguous policies and a large amount of
manual efforts for corner cases.

Comparison with other policy analyzers. Since there is no
public-available ToS analyzer, we compared DPA’s policy
statement discovery with two state-of-the-art privacy policy
analyzer Polisis [57] and PolicyLint [45].2 Note that Polisis
and PolicyLint are designed for privacy policy analysis, not
ToS analysis.

More specifically, we manually annotated 200 sentences
from 3 SDK ToSes (e.g., Twitter, Google, Facebook), which
yielded 83 sentences are associated data collection and shar-
ing policy and the rest (117) are not. In our experiment, we
evaluated the approaches on this dataset. Table 4 shows the
experiment results. Our study shows that DPA outperforms
both approaches in precision and recall.

We also compared DPA’s restricted data object recognition
module with PolicyLint [45]. We use the aforementioned 534
IOB-encoded sentences to evaluate both DPA and PolicyLint
via 10-fold cross validation. For PolicyLint, we retrained its
NER model using our annotated corpora. We also show the
performance of PolicyLint with its original model. Table 4
shows the precision and recall of both approaches. Our study
shows that DPA has a much better recall (90.8% vs 82.7%).

3.3 Cross-library Analysis

To capture malicious data harvesting in an app, our Cross-
library Analyzer (XLA) identifies cross-library API calls to
find the data gathered by a third-party library from a co-

2PolicyCheck [46] shared the same policy analysis module with Poli-
cyLint.



Table 4: Comparison with Polisis and PolicyLint/PolicyCheck

Tasks Tools Precision Recall

Statement finder
XFinder 87.2% 89.3%
Polisis 27.5% 19.2%

PolicyLint 71.4% 25.3%

Restricted data
detector

XFinder 95.2% 90.8%
PolicyLint (original) 82.2% 71.3%
PolicyLint (retrained) 86.5% 82.7%

located SDK (within the same app), and then checks the com-
pliance of such activities with the SDK’s data sharing policies
recovered by DPA (Section 3.2). To this end, XLA runs a
program analysis tool that integrates existing techniques.

Locating cross-library API calls. XLA looks for cross-
library calls by walking through the call graph generated
by FlowDroid [47]. Specifically, each node in the graph rep-
resents a function and carries the information about the func-
tion’s class and package (according to Java’s reverse domain
name notational convention [33]); each edge (with direction)
describes a call from the caller node to the callee node. On
the graph, XLA identifies cross-library calls by comparing the
package names of the caller and callee class: if their top and
second level domains (1) do not match with each other, and
(2) do not match the host app’s package name, the call is con-
sidered cross-library – an approach also used by MAPS [87].

Also, a cross-library call can leverage Java’s reflection to
implicitly trigger a function (see the example in Figure 4a).
Hence, XLA inspects all reflection calls on the call graph, and
checks whether the caller and callee classes belong to dif-
ferent libraries. To this end, XLA first locates reflection calls
from a set of call patterns (see Table 6). As shown by a recent
study [62], these patterns cover the most common reflection
use cases in Android apps. Further, our approach recovers the
callee’s class name and method name from the arguments
passed to the reflection functions. For example, the argu-
ment of Class.forName(target_class_name) indicates
the callee class name, e.g., com.facebook.AccessToken in
Figure 4a. A problem here is, the argument could be a vari-
able. To find its value, XLA utilizes DroidRA [62], an inter-
procedural, context-sensitive and flow-sensitive analyzer ded-
icated to resolve reflection calls, to track the string content
propagated to the variable.

Identifying cross-library leaks. With the discovered cross-
library calls, XLA then identifies the restricted data items
returned to the caller library, and performs taint tracking to
detect potential data exfiltration (to the Internet) by the caller
library. In particular, XLA leverages Meta-DB to recognize
restricted data items being returned , as meta-DB recorded
which are the sensitive SDK APIs and the restricted data they
return (see Section 3.4).

Further, we need to track down the data flow of the re-
stricted data. Instead of directly using the techniques of Flow-
Droid (e.g., with deep object sensitivity), which is considered

heavy-weight for an analysis of 1.3M apps [77, 87], we need
a relatively light-weight tool. Hence, we opt for existing taint
track techniques that are capable of inter-procedural analy-
sis, field-sensitive but not object-sensitive. We take the return
value of the cross-library calls as the taint source, and network-
ing APIs as the sink. For example, the return value of the re-
flection call on com.facebook.AccessToken.getToken()
is a taint source including Facebook user’s session token (Fig-
ure 4a); once the data reaches a sink in the caller library, e.g.,
OutputStream.write(String.getBytes()) API to send the data
to the Internet, XLA reports a potential data exfiltration.

Checking policy non-compliance. Given a potential exfil-
tration of the restricted data from a victim SDK, we check
whether it violates the ToS policy of the target SDK (obtained
by DPA in Section 3.2). Depending on the conditions with
which the ToSes restrict the access to individual data items,
our approach for a compliance check is as follows.

• No third-party access; no access by any party. If the ToS
(e.g., those of Facebook, Twitter and Pinterest) prohibits an
access to the data by a third-party (e.g., a third-party library
or its vendor) or by any party (e.g., Facebook user ID and
password are not even allowed to be exfiltrated/stored by the
host app vendor), we consider the exfiltration of the data a
violation of the ToS – an XLDH activity is identified.

• Requiring user consents; complying with regulations. Some
ToSes ask that the access to certain data items should require
a user consent or comply with privacy regulations (i.e., GDPR,
CCPA, COPPA). In XLDH, data sharing and collection
occur between caller library and victim SDK without being
processed by the host app. Hence, we consider the caller
library to be a data controller [19], which has obligations
to comply with regulations and disclose the data practice
in its privacy policy [19]. In our study, we check the privacy
policy of the caller library to determine whether it discloses
the data collection and sharing behaviors in its privacy
policy. To automatically analyze the privacy policy, we use
PolicyLint [45] to extract privacy policy tuples (actor, action,
data object, entity) associated with that restricted data. Here
the tuple (actor, action, data object, entity) illustrates who
[actor] collects/shares [action] what [data object] with whom
[entity], e.g., “We [actor] share [action] personal information
[data object] with advertisers [entity]". In our study, we care
about the tuples with caller library as actor, share/collect
as action and the restricted data as entity. Note that for
non-English privacy policies which PolicyLint [45] can not
handle, we translate them into English for further processing.

Discussion. Recent studies such as [80, 87] on privacy com-
pliance considered the data as leaked out once an API return-
ing the data is invoked by an unauthorized party. We found this
is imprecise in detecting XLDH, due to the pervasiveness of
service syndication (e.g., Twitter4j, Firebase Authentication)
in which a benign library wraps other SDKs (Facebook login,
Twitter login) to support their easy integration into apps. Such



Table 5: Summary of 40 vendor’s data sharing policies

Condition Percentage Example
No access by any party 396 (38.7%) Don’t proxy, request or collect Facebook usernames or passwords.

User consent 249 (24.34%) Obtain consent from people before using user data in any ad.
No third-party access 206 (20.13%) Don’t use the Ads API if you’re an ad network or data broker.

Comply with regulations 123 (12.02%) Any End User Customer Data collected through your use of the Service is subject to the GDPR
Other 47 (4.59%) Only certain application types may access Restricted data for each product.

Table 6: Most common patterns of reflection call sequences

Sequence pattern
Class.forName()→ getMethod()→ invoke()

getDeclaredMethod()→ setAccessible→ invoke()

syndication libraries also acquire restricted data from these
third-party SDKs but rarely send them out to their servers.
Therefore, a policy violation can only be confirmed once the
collected data are delivered to the unauthorized recipient.

3.4 Meta-DB Construction

Our Meta-DB records the API specifications and metadata
of top 40 third-party libraries, which cover 91% of Google
Play apps (see below). For each API, Meta-DB records the
data it returns (e.g., session token, page likes, user ID, pro-
files, groups followed) and whether or not the return data is
restricted by the SDK’s ToS.

Identifying popular third-party SDKs. To find the most
popular SDKs which are appealing XLDH-attack targets, we
ranked the third-party SDKs based on the number of apps
using them. Specifically, we randomly sampled 200,000 apps
in Dg and identified the third-party SDKs using by those apps.
Just like MAPS [87], we considered a SDK as third-party if
the top and second level domains in its package name do not
match the app’s package name. After ranking those SDKs, we
selected the top 200 excluding those with obfuscated pack-
age names, and further manually reviewed and removed util-
ity SDKs which are not associated with restricted data, e.g.,
Google gson SDK [21]. The remaining 40 SDKs were then
used in our research to construct Meta-DB (Figure 3).

Note that in our study, the 40 SDKs (from top 200) recorded
in Meta-DB are integrated in 91% of apps. This indicates a
high chance for them to co-locate with a malicious library in
an app. In contrast, the remaining 6,273 SDKs we found were
less popular: the 201st popular SDK was integrated in just
0.8% of Google Play apps.

Identifying privacy-sensitive APIs. We gathered 26,707
API specifications provided by the aforementioned 40 SDK
vendors. Such documentations, especially those provided
by popular vendors, tend to be highly structured, with well
specified API names, argument lists, and return data. This
allowed us to build a parser to extract the API names and

the return values. Particularly, for each API, we use regex (e.g.,
"returns(\W*\w*)*|retrieves(\W*\w*)*|get(\W*\w*)*")
to match the return values. Note that API specifications are
often well-structured and the regex based method is efficient
to identify the return values. In particular, we evaluate the
regex-based method on 200 labelled data and achieve a
precision of 100% and a recall of 98.74%. Altogether, we
extracted 10,336 APIs and their associated return values from
26,707 API specifications.

Our study marked an API as privacy-sensitive if its
return values were protected by data sharing policies. This
is done by checking each API’s return values against the
restricted data reported by DPA. However, this can not be
achieved by simply using a string matching method, because
the API specification and ToS usually describe protected
information differently. For example, ToS tends to describe
a data object in a more generic way (e.g., user profile), while
the API documentation usually use more specific terms
(e.g., username). Hence, we align the data objects in API
specification with that in the ToS based upon their semantics
(represented by the vectors computed using an embedding
technique). Specifically, we train a domain-specific word
embedding model to get the data object vectors, and then
measure the similarity by calculating the cosine distance
between the vectors. In our implementation, we gather 1.5G
domain-specific corpora (e.g., privacy policies, ToSes, API
documentations) and 2.5G open-domain corpora (e.g., Google
News, Wikipedia) to train a skip-gram based word2vec model.
Here, we leverage data augmentation technique [84], which
generate a new sentence by randomly replacing synonym,
inserting word, swapping positions of words and deleting
words, to enlarge our domain-specific corpora.

Evaluation. To evaluate the model, we randomly sampled
300 APIs from 6,394 APIs associated with 10 SDKs’ API
specifications. We manually checked the API specification
and labeled 153 privacy-sensitive APIs and 147 non-privacy-
sensitive APIs. By setting a similarity threshold of 0.7, our
approach achieved 87% precision and 93% recall on the an-
notated dataset. In total, our model discovered 1,094 sensitive
APIs from 26,707 APIs of 40 SDKs meta-DB. We manually
checked all of them and got a precision of 85.6%. Note that we
only used the validated sensitive APIs in the XLDH detection.

returns(\W *\w*)*|retrieves(\W *\w*)*|get(\W *\w*)*


4 Evaluation and Challenges in Detection

This section reports our evaluation study on XFinder to under-
stand its effectiveness and performance, and the challenges in
identifying XLDH from a large number of real-world apps.

4.1 Effectiveness
Evaluation on ground-truth set. We evaluated XFinder over
the ground-truth dataset including a “bad set” and a “good
set”, with 40 apps each. The apps in the bad set are integrated
with 4 XLDH libraries (com.yandex.metrica, com.inmobi,
com.appsgeyser, cn.sharesdk), which were found manually
early in our research (before we built XFinder). The good set
includes the apps randomly sampled from the top paid app
list on Google Play [22]. They are considered to be mostly
clean and were further confirmed manually in our research to
be free of XLDH libraries: we inspected cross-library calls
in these apps against the top 40 SDKs (recorded in Meta-DB)
and concluded that their corresponding data flows do not vio-
late the callees’ ToSes. Running on these ground-truth sets,
XFinder achieved a precision of 100% and a recall of 100%.

Evaluation on unknown set. Then, we evaluated XFinder
on a large “unknown” dataset – Dg excluding 13018 apps
integrating known XLDH libraries, which contains 1,328,130
free Android app in total with 40 SDK ToSes. XFinder re-
ported 2,968 apps associated with 37 distinct XLDH libraries
(distinguished based on their package names). To measure the
effectiveness of XFinder, we randomly selected three apps
for each identified XLDH library (105 in total) and manually
validated the detection results: 32 (out of 37) identified XLDH
libraries were true positives (a precision of 86%), affecting 93
out of the 105 apps. We performed manual end-to-end tests on
seven XLDH libraries (including OneAudience, Mobiburn,
and Devtodev) in real-world apps, and confirmed that they
indeed exfiltrated Facebook user data to their servers (using
Xposed [40] for app instrumentation and Packet Capture [1]
for inspecting networking traffic).

Looking into the five falsely reported libraries, we
found that three of them (com.parse, com.batch and
com.gigabud) were caused by the taint analysis of XLA. As
mentioned in Section 3.3, for better scalability, our taint track-
ing is object-insensitive. Specifically, after our approach taints
a field f (holding a Facebook token) in an object obj of class
C, which causes the whole class to be tainted; as a result,
when the taint of the field f ′ (not storing a sensitive data)
in another object obj2 of the same class is propagated to a
sink, XLA could not distinguish the two objects and simply
considers the token-related information to be exposed to the
sink, thereby leading to the false alarms.

Another two false positives (com.xcosoftware and
fr.pcsoft) were introduced because our current program
analysis could not fully resolve the server endpoints of data
exfiltration. Although XFinder found that the two libraries

expose a Facebook access token to the Internet (so reporting
them as XLDH), the libraries actually send the token to the
Facebook server (to retrieve additional user data, e.g., name,
ID, page likes), not an unauthorized recipient. Fully auto-
mated resolution of such an endpoint is challenging, since
the Facebook endpoint used in the networking API is heav-
ily obfuscated (using a complicated control flow to trans-
form the endpoint string, see the code snippet in our released
dataset [39]). We utilized one of the state-of-the-art tools [89]
capable of statically resolving string values in Android apps
(using a value set analysis approach, with backward slicing
and string related operation analysis), which, however, still
failed to handle a case. In our research, we also observed
that certain XLDH libraries such as com.mobiburn fetch a
dynamic exfiltration endpoint whose value cannot be resolved
statically (see the evasion techniques in Section 5.3). Hence,
for a better coverage, XFinder opts to report all exfiltration
cases even if the endpoints could not be resolved, and then
relies on a manual process to validate the results. Note that
the percentage of such false cases is low in our results.

Discussion of potentially missed cases. Due to the lack of
ground truth, determining the number of missed XLDH li-
braries on a large scale is challenging. In general, false nega-
tives can be introduced for two reasons: (1) challenges in au-
tomatic data-sharing policy analysis on ToSes; (2) limitations
of today’s static program analysis techniques, e.g., precise
taint tracking, building complete call-graphs, and resolving
reflection-call targets.

Specifically, although DPA achieved a high precision and
recall in ToSes analysis (see evaluation), it missed vague and
complicated cases as mentioned in Section 3.2. This can be
improved in the future by investigating efficient dependency
parsing on long sentences. Second, XFinder shares the lim-
itations of current static analysis techniques. In particular,
false negatives could be introduced due to the limited capabil-
ities of taint tracking in complicated real-world apps/libraries.
For example, an XLDH library could store the restricted data
in the host app’s datastore (e.g., Android SharedPreferences,
SQLite database, files [3]) and later use another thread/module
to retrieve a specific date item and send it out. Such a com-
plicated data flow could not be automatically taint-tracked by
our current approach, nor could it be handled by other state-
of-the-art tools like FlowDroid. We will leave the systematic
study of the convoluted XLDH data practices to our future
work. Furthermore, limited by the capability of DroidRA [62]
to resolve targets of reflection calls, our approach may not
identify all cross-library calls if the target class name and func-
tion name are stored in variables, passed from other threads,
or obfuscated. Also, since we leverage FlowDroid to build
the call graphs, which may not be complete, we may not find
all cross-library calls based on the graphs.



4.2 Performance

Running XFinder on 1.3 million apps and 40 SDK ToSes,
it took around two months to finish all the tasks including
DPA, Meta-DB construction, and XLA. Among these three
components, XLA was the most time-consuming one (around
two months). To analyze all 1.3M apps (Dg), we utilized a
set of computing resources available to us, including one su-
percomputer (shared in our organization), two servers (20
cores/251GB memory, 12 cores/62GB memory respectively),
and 24 desktops (4 cores/15GB memory each). We config-
ured a 300-second timeout for taint tracking, with 83.7%
of the apps successfully analyzed without timeouts or de-
compilation errors (11.4% and 4.9% of them with timeouts
and de-compilation errors respectively). DPA took 2 hours to
extract 1215 (ob ject, condition) pairs on a Mac machine with
processor 2.6 GHz Quad-Core Intel Core i7 and memory of 6
GB 2133 MHz LPDDR3. Meta-DB construction took 4 hours
to find privacy-sensitive APIs from the API documentations
of the top 40 SDKs.

5 Measurement

Based on the detected XLDH libraries and affected apps,
we further conducted a measurement study to understand the
XLDH ecosystem. In this section, we first present the overview
of the real-world XLDH ecosystem discovered in our study
(Section 5.1), and then describe the scope and magnitude of
this malicious activity, as well as the infection techniques and
distribution channels of the XLDH libraries.

5.1 XLDH Ecosystem

Before coming to the details of our measurement findings,
we first summarize the XLDH ecosystem. As outlined in Fig-
ure 6, an adversary, who owns an XLDH based data brokerage
platform (e.g., OneAudience), releases an XLDH library that
aims to harvest data from Facebook SDK. To this end, the
adversary needs to distribute the library to a large number
of real-world mobile apps, so he reaches out to app owners,
especially those with popular apps embedding with Facebook
SDK, to provide them monetary incentive to integrate the
XLDH library (Ê). The app integrated with the library and
the Facebook SDK, once passing the SDK vendor’s review
(Ë) and the app store vetting (Ì), is available for downloading
(Í). When innocent users install the app and log in Facebook,
the XLDH library will stealthily access the Facebook token to
harvest the user’s Facebook data (Î) and send them out to its
back-end platform (Ï). Meanwhile, the app owner receives
commissions from the adversaries based on the number of app
installation (e.g., 0.03$ per installation for OneAudience) (Ð).
Finally, the brokerage platform monetizes users’ Facebook
data by sharing it with a marketing company (e.g, Nielsen
which offers political and business marketing) (Ñ).

Table 7: App Categories

Categories # of apps Proportion
Game 5556 28%

Entertainment 1296 7%
Food and Drink 1160 6%

Books 827 4%
Business 827 4%

Figure 6: XLDH ecosystem

5.2 XLDH Libraries in the Wild

Prevalence of XLDH. Our study reveals that XLDH activities
are indeed trending among the real-world apps. Altogether,
we detected 42 distinct XLDH libraries integrated in more
than 19K apps and targeting at 16 SDKs. Apps including
XLDH libraries, as discovered in our research, are found in
33 categories on Google Play. As shown in Table 7, over 35%
of apps are in the categories of game and entertainment. Those
apps have been downloaded more than 9 billion times in total
on Google Play. Among all affected apps, some are highly
popular with more than 100 million downloads (Table 8).

Table 8 illustrates the top-10 XLDH libraries based on
the number of apps integrating them and the data harvested
(we release the full list of XLDH libraries online [39]).
We found that a few XLDH libraries dominate the XLDH
ecosystem. Particularly, com.yandex.metrica is the most
popular XLDH library and appears in 40% of the affected
apps. com.yandex.metrica is the SDK provided by Yandex,
a Russian Internet corporation, for traffic analytics service.
com.yandex.metrica leverages the reflection technique
to fetch Google advertising ID and Android device ID
from the Google play service SDK. Associating Google
advertising ID with Android device ID is privacy sensitive
since it can be used to identify a specific Android user.
However, com.yandex.metrica does not declare this activity
in its privacy policy, which violates the ToS of the Google
play service SDK [13]. Similar behavior is also found in
com.appsgeyser, which has affected more than 4 thousand
apps with 15 million downloads.

Historical versions of XLDH libraries. To understand the
evolution of XLDH libraries’ behavior, we collected their old



Table 8: Top-10 XLDH libraries (integrated in the most apps)

XLDH library # of
apps/downloads Harvested data

com.yandex.metrica 8,014/2B+ Google Advertising ID, Android
ID

com.inmobi 4,283/4B+ Google Activity Recognition

com.appsgeyser 4,202/15M+ Google Advertising ID, Android
ID, IMEI, Mac Address

com.oneaudience 1,738/100M+
Facebook

ID/name/gender/email/link,
Twitter user data

cn.sharesdk 815/191M+ Bytedance ID/name

com.umeng.socialize 495/175M+

Facebook/Twitter/Drop-
box/Kakao/Yixin/Wechat/QQ/Si-

na/Ali-
pay/Laiwang/Vk/Line/Linkedin’s

AccessToken and user data
(ID/name/link/photo)

com.revmob 340 /36M+ Facebook AccessToken

ru.mail 299/100M+ Google Advertising ID, Mac
Address, Android ID, IMEI

com.ad4screen 245/183M+ Facebook appid, AccessToken
com.devtodev 231/318M+ Facebook user gender, birtbday

versions, and then investigated the change of their malicious
functionality. Specifically, we gathered historical versions of
XLDH libraries from the library websites, Maven repositories
[27] and GitHub [20]. In this way, we found 495 versions
from October 31, 2011 to February 12, 2020 for all the
42 XLDH libraries. After that, for each XLDH library, we
monitored the code change related to malicious cross-library
data harvesting by checking its fingerprints (e.g., class names
of the reflections, f orName and getMethod) across different
library versions.

We selected 7 XLDH libraries (com.ad4screen,
com.onradar, ru.wapstart, io.radar, com.devtodev,
com.yandex.metrica and com.inmobi), which had at
least three versions recorded in our dataset, to look at their
trend individually. Figure 7 illustrates the maliciousness of
XLDH libraries across different versions. We observe that
libraries tend to have XLDH code in their newer versions.
Among them, com.yandex.metrica and ru.wapstart began
to release the XLDH versions since late 2014. Interestingly,
we found that after Oct. 2019, the versions of io.radar and
com.devtodev removed the XLDH function to steal users’
Facebook data. We believe that this is at least in part thanks to
our report to Facebook, Twitter, and Google Play (in October,
2019), which then warned the vendors of the offending
libraries. Also, in 2018, com.inmobi released the version with-
out XLDH to stop collecting Google activity recognition data.
This could result from the attempt to comply with GDPR.

To understand the presence of XLDH library in the wild,
we performed a longitude study of the Google Play apps
with XLDH libraries com.oneaudience, com.devtodev and
io.radar from January, 2015 to December, 2019. All of these
libraries stealthily access app users’ Facebook data (e.g., gen-
der, birthday, visited place, etc.). Specifically, we started from

Figure 7: Distribution of XLDH versions

the 2,076 apps (out of the 1.3 million set), which are found to
have integrated the above libraries, and fetched the historical
versions of these apps on [41] to evaluate the presence of
XLDH libraries in each version. In this way, we were able to
collect 936 apps with 5,732 versions. Among them, 1,976 of
the versions were affected.

Figure 8 illustrates the evolution of the number for the
newly-appearing apps with the XLDH libraries, compared
with the number of the apps with the libraries removed over
time. We can observe that a large number of the affected apps
came into sight from July, 2017 to December, 2019, and the
growth started to slowdown in 2019 (in part thanks to our
report to Facebook, Google Play, etc., in October, 2019). In-
terestingly, for each library, the trend of disappeared apps is
almost identical to that of newly appearing apps with the delay
of about half a year, e.g., 165 new com.oneaudience apps were
published during the second half of 2018, while 166 apps dis-
appeared half a year later. Comparing these two app sets, we
found that there were actually 159 overlapped apps generated
by an app builder appsgeyser.com – these apps share similar
package names, which we released online [39]. This indi-
cates that the adversaries were leveraging appsgeyser.com to
quickly release and then remove a bunch of com.oneaudience
apps periodically, which is likely to be a strategy for gathering
data from different users. as further evidence, we observed
that since March 2017, AppsGeyser in its privacy policy ac-
knowledged that it would include OneAudience in app gener-
ation [7]. Similarly, the technique is adopted by a game app
provider, duksel.com, to integrate com.devtodev.

5.3 Dissecting Infection Operations

Most targeted SDKs. Figure 9 shows the victim SDKs and
the number of XLDH libraries (top 20 XLDH libraries based
on the number of apps integrating them) that attack them.
Google ads service is the most commonly affected SDK, fol-
lowed by Facebook login and Twitter login. Among victim
SDKs, 7 of them are OSNs, 2 are advertising and tracking
platforms, 6 are instant messaging service, 1 is cloud service.

Given the list of victim SDKs, we observe around half of
them are in the category of online social network (OSN). It
suggests that high-profile OSN platforms present an invalu-



Figure 8: Number of newly appearing and disappeared XLDH
libraries

Figure 9: XLDH flows, where XLDH libraries (left) fetch
data from victim SDKs (right)

able source of private user data to the XLDH adversaries. In
our study, we observe the adversaries stealthily collect Face-
book token, WeChat token and LinkedIn token, which can
be used to access OSN-specific semantically-rich data. For
example, we observe com.oneaudience and com.mobiburn
stealthily access Facebook token and further leverage that to-
ken to fetch semantically-rich Facebook data, including Face-
book ID, Gender, Email, Pages likes, Followed groups, etc. In
particular, Facebook data, such as the pages likes, social, po-

litical, health groups the users followed, timeline, etc. can be
used to create the users’ psychographic profiles, as suggested
by recent Facebook political scandal [85]; similarly, the data
of Twitter, LinkedIn, Amazon, including a user’s tweets, page
likes, education background, celebrities she followed, pur-
chase history, etc., can also be exploited by the adversaries
to profile the user’s personality, values, opinions, attitudes,
interests, and lifestyles. The risk is especially serious since
we observed that data harvested through com.oneaudience
indeed have been shared with a political and business adver-
tising company Nielsen.

Evasiveness of XLDH libraries. In our study, all affected
apps were published on Google Play, which means the XLDH
libraries have bypassed the app vetting of the Google Play
and the victim SDK vendors (e.g., Facebook and Twitter, if
app review process exists). The result suggests that XLDH is
a new type of threat not well understood before. To further
assess whether existing techniques can detect XLDH libraries,
we leveraged VirusTotal [38], which aggregates more than 70
antivirus products, to scan all the XLDH libraries we found.
Interestingly, no single product in the VirusTotal can detect
any XLDH libraries we found; in contrast, VirusTotal was
known to be capable of detecting harmful libraries studied
in prior works [50, 60, 64, 75]. More than half of XLDH
libraries we found abused Java reflection to call the target
SDK (see Section 2), which leverages a generic Java func-
tion, to implicitly call the target SDK API. Further, unlike
regular code in Java that needs to import the target class (e.g.,
import com.facebook.AccessToken [10]), the malicious
library does not have to explicitly import the target class. This
makes the cross-library intention more evasive. Interestingly,
in our study, we also observe that XLDH libraries strategi-
cally hide the data exfiltration channel to evade detection, as
elaborated below.

Hidden data exfiltration channels. We manually analyzed
the decompiled code of XLDH libraries and observed some
other techniques they use, with which the data-harvesting
behaviors are harder to analyze:

•Dynamic exfiltration endpoints. In some XLDH libraries, we
observed the adversaries remotely control the data exfiltration
process, where the endpoints to receive the data and the time
to exfiltrate data are configured to be dynamic. More specif-
ically, at runtime, the XLDH library (e.g., com.mobiburn )
fetches a remote configuration file, which specifies the end-
point (a URL) that data should be exfiltrated to, and when to
do so. Such a treatment helps XLDH library evade the do-
main blocklist based blocking, once its server endpoint is on
the blocklist and thereby blocked by local firewalls, ISP, etc.;
not hard-coding the malicious endpoint can also render static
vetting less effective. Furthermore, a dynamic, controlled ex-
filtration schedule gives the adversaries better control to evade
detection, e.g., no exfiltration during vetting.

• Hidding data exfiltration in crash reports. Another in-



teresting observation is that XLDH libraries put the exfil-
trated data in crash reports. For instance, the XLDH library
com.kongregate appends the harvested Facebook session to-
ken in its crash report, and sends it out to the Internet.
• Data encryption. We observed the XLDH libraries
(e.g., com.mobiburn and com.umeng) encrypted the data
before sending to the Internet: particularly, RSA used by
com.mobiburn and AES used by com.umeng for data encryp-
tion. This can render network-based privacy detection less
effective, e.g., [73], which used mitmproxy to decrypt HTTPS
traffic for data leakage inspection.

Backend server endpoints. Our study uncovers a series of
backend servers of the XLDH libraries (see Table 10 in Ap-
pendix). We used VirusTotal to scan all of the backend server
URLs. However, none of them were flagged as malicious. We
observe that while an XLDH library typically exfiltrates data
to their own domain – which might be blocked by domain
blocklists [31, 36, 38] – XLDH developers also leverage rep-
utable domain to receive data. Specifically, the XLDH library
com.kongregate appends the data into its crash reports, and
thus, the data was sent to Google’s Crashlytics, a platform that
helps app developers collect crash information and analyze
stability issues [12]. Similarly, com.adience sent their data to
a free web hosting service frwrd.me.

5.4 XLDH Library Distribution Channels

Behind the popularity of XLDH libraries are the promotion
mechanisms that XLDH vendors take to attract app vendors.
To understand their promotion and distribution channels, we
searched the library websites, news reports, and analyzed the
code and harvested data of XLDH libraries, and summarize
their distribution channels as below.

• Pre-installed libraries. As mentioned in Section 5.2, we
observe that XLDH libraries were widely pre-installed in
the apps, which were generated by free app building ser-
vices (e.g., appsgeyser [6], duksel [14]). For instance, 18%
of the affected apps of com.devtodev were generated by the
duksel [14], whose apps show similar package name pattern
“com.duksel.(\W*\w*)*free".

• Embedding in other libraries/services. Another important
channel to distribute malicious libraries in real-world apps is
to be integrated by other popular libraries or services. As men-
tioned earlier, the vendor of com.appsgeyser, AppsGeyser, is
the biggest free Android app builder on the market [6] who
integrates XLDH libraries in the Android apps it created. In-
terestingly, we found that com.appsgeyser appears 34% and
29% of the time with com.onaudience and com.yandex, re-
spectively. Hence, the users of apps generated by AppsGeyser
face the risks of exposing Facebook and Twitter user data and
Google Advertising IDs and device IDs.

As another example, we found the XLDH li-
brary com.mobiburn included another XLDH library

com.onaudience. So any app integrates the former library
could silently include the latter, increasing the chance of
XLDH-library distributions. This was observed in 8 older
versions of com.mobiburn, released from April 11, 2018 to
June 17 2019 (v1.5.3 to v1.9.0). This might come out of the
collaboration relation between the XLDH developers.
• Offering app monetization. Another important promo-
tion channel XLDH vendors take is to offer app vendors
monetary incentives to integrate the libraries. For example,
OneAudience offers app vendors 0.03 USD per app installa-
tion; Mobiburn offers 0.015 USD per app installation.

Among those libraries offering app monetization,
com.oneaudience and com.mobiburn do not provide any
functionalities to the apps, except for data harvesting. In-
terestingly, the app vendors may not fully understand the risk
such a library incurs in her app. For example, OneAudience
claims in its privacy policy (dated in February 19, 2019, and
accessed in our study in October, 2019) that it collects the
user’s device ID, operating system type, device make and
model, etc., which are albeit private but commonly consid-
ered acceptable if properly disclosed; however, behind the
scene, it collects a full spectrum of Facebook and Twitter data
via unauthorizedly using AccessToken.
• Offering appealing functionalities. Some libraries
(com.sharesdk and com.umeng.socialize) offer app develop-
ers helpful functionalities, although behind the scene per-
forming XLDH. The functionalities they offer include in-
tegration with social media (e.g., single-sign on, posting to
Facebook/Twitter), analytics, crashreports, pushing messages,
in-app purchases, etc.

6 Discussion

Impacts to privacy regulations. Our study complements the
recent understandings to privacy compliance: a thread of re-
cent works [87][44] assessed whether an app’s data practice
(e.g., data collection and sharing with third-party) is con-
sistent with what is disclosed in its privacy policy (a.k.a.,
flow-to-policy consistency analysis). These studies generally
suggested that app vendors are at fault by not properly dis-
closing the data sharing with third-parties (e.g., advertisers,
analytics providers, etc.), and correspondingly, app vendors
have been charged by regulatory agencies (e.g., FTC) [24]. To
complement these studies, our study shows that app vendors
can also be victims, since an in-app data flow to a malicious
third-party by XLDH can be opaque to app vendors. In this re-
gard, our work has serious implications to privacy compliance
regulations; also, XFinder can be used by both regulators and
app vendors to inspect in-app data practice with third-parties.
Responsible disclosure. We have reported the affected apps
and XLDH libraries we found to the app vendors and app
store (e.g., Facebook, Twitter, Google Play store) and helped
them understand the threats since October, 2019. Google has

frwrd.me
com.duksel.(\W *\w*)*free


removed the affected apps from the Google Play or asked the
app owners to remove those libraries. Facebook and Twitter
have taken legal actions against the XLDH library providers.

Future work. As discussed in Section 4, an automatic and
sound detection of XLDH libraries in the wild is limited, at
least in part, by today’s techniques for document analysis
(ToS, privacy polices) and program analysis (e.g., tracking
complicated data flows, resolving reflection-call targets). Note
that, as we observed, reflection-based calls are widely used in
XLDH activities, likely because they are more stealthy and
difficult to detect than conventional calls (developers may
also use reflection calls with less/none malicious motivations,
such as maintaining backward compatibility when the target
class may not exist [62]). Hence, better capability to resolve
reflection calls in the future may contribute to a more sound
detection of XLDH and more in-depth understanding of the
XLDH activities. Further, although we focused on Android
in this study, XLDH is completely feasible on iOS, which
we plan to study in the future work. We indeed made a pre-
liminary attempt by looking at the iOS version of an XLDH
library OneAudience, and found it has the same XLDH be-
havior as on Android (harvesting data from Facebook and
Twitter SDKs). We communicated XLDH risks to Apple in
late 2019, who worked with us to analyze the iOS counterparts
of XLDH libraries we found on Android and asked affected
apps to remove the malicious libraries.

7 Related Work

Study on malicious mobile SDKs. Prior studies such as ex-
tensively explored the risks of malicious mobile SDKs. In
particular, prior research showed that malicious SDKs could
collect users’ sensitive data from the host apps and mobile de-
vices, leading to serious privacy leakage due to their wide inte-
gration/adoption by popular mobile apps [53, 72, 78, 79, 81].
The problem has been studied through large-scale measure-
ments using both static [69] and dynamic [52, 72, 73] program
analysis. The sensitive data studied include on-device data
(e.g., IMEI, phone number, GPS coordinates), as well as user
profiles (e.g., age, gender, preferences) from app server [54,
69]. To mitigate the problems, prior research proposed differ-
ent fine-grained mechanisms to isolate third-party SDKs [59,
76, 82, 83]. Unfortunately, these mitigates are hard to be fully
adopted by current ecosystem due to different deployment
limitations (e.g., requiring app code instrumentation [76, 82]
or human-crafted policies [83]). Recent studies also studied
malicious SDKs involved in the ad-fraud scheme, using tech-
niques like click injection and click flooding [65]. Different
from prior research, our study sheds lights on a new type of pri-
vacy harvesting channel (i.e., the cross-library data harvesting)
which is significantly different from prior studies in terms of
the diversity of the private data and complexity of in determin-
ing their data sharing policies (specific to individual SDKs). In

addition, our measurement covers 1.3M apps for a comprehen-
sive understanding of the problem in the wild, the largest scale
compared to all previous research for privacy leakage study.

Text analysis for mobile privacy. Our approach for identify-
ing privacy in-compliance between cross-library invocations
through their documentations (i.e, Terms-of-service) follows
a history of proposed text analysis over mobile apps, using a
mixed technique of NLP and machine learning. Topics within
this range include identifying sensitive data items [68, 69],
their desired destinations [87], policy contradictions [45] as
well as the the benign usage contexts [44, 51]. In terms of mo-
bile privacy compliance, Whyper [70] is among the first to use
NLP techniques for automatically reasoning the permission
usage in mobile apps through text analysis from app descrip-
tions. Later, a thread of recent works [44, 57, 80, 87, 88] pro-
vide better understanding for the privacy policy and its compli-
ance with mobile app’s data practice. Specifically, Polisis [57]
proposes neural-network based classifiers to automatically an-
notating privacy policies with both high-level and fine-grained
labels. Maps [87] performs large-scale measurement analysis
to identify those privacy leakage of mobile apps which are
not disclosed by their privacy policies. PolicyLint [45] inves-
tigates the internal contradictions of a given privacy policy, by
identifying and analyzing the data collection and sharing state-
ments at the sentence-level. However, these works are more
focused on the privacy implications caused by app developers.
Instead, our research look into the privacy compliance among
different parties. This recalls a more in-depth analysis over
a border range of privacy-related documents (i.e, Terms-of-
service of third-party libraries). The sensitive data considered
in our research among cross-library invocations rely on pars-
ing the ToS statement, rather than a pre-defined list, as did in
previous studies [69, 87]. In addition, identify such privacy vi-
olations requires more fine-grained rules (Section 3.2), which
is not addressed by previous research.

8 Conclusion

In our paper, we report the first systematic research on XLDH
libraries aiming at third-party SDKs to harvest private user
data, based upon a suite of techniques that addresses the chal-
lenges in analyzing SDK ToSes to recover the semantics of
data sharing policies and evaluating apps to find cross-library
interactions. Our study demonstrates the significant privacy
and social impacts of this new threat. Our research further un-
covers a series of unique characteristics of the XLDH libraries,
such as their distribution channels, hidden data exfiltration
channels. We discussed the limitations of our current tool
and the future research that is needed for a more in-depth
understanding of XLDH activities.
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9 Appendix

Table 9: Examples of SubTree Patterns (with the full list
released online [39])

sentence patterns
store the confidential information
without our prior written consent

((data:dobj,(condition:pobj)
condition:prep)action:ROOT)

collect such information when the
applicable End User has consented

to such activities

((data:dobj,(other:nsubj,has:aux,
(condition:pobj)condition:prep)
condition:advcl)action:ROOT)

obtain consent before you use our
service data

((condition:dobj,(data:dobj)
action:advcl)obtain:ROOT)

Table 10: Examples of Exfiltration Endpoints (with full list
released online [39])

XLDH Library Endpoint
com.oneaudience https://api.oneaudience.com/api/devices

com.revmob https://android.revmob.com
io.radar https://api.radar.io/

com.adience http://frwrd.me/sdkserver
com.buongiorno https://auth-api.newton.pm/

https://en.wikipedia.org/wiki/Facebook--Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook--Cambridge_Analytica_data_scandal
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