
Union under Duress: Understanding
Hazards of Duplicate Resource Mismediation in Android Software Supply Chain

Xueqiang Wang1*, Yifan Zhang2*, XiaoFeng Wang2, Yan Jia3, and Luyi Xing2

1University of Central Florida, xueqiang.wang@ucf.edu
2Indiana University Bloomington, {yz113, xw7, luyixing}@indiana.edu

3DISSec, College of Cyber Science, Nankai University, jiay@nankai.edu.cn

Abstract

Malicious third-party libraries have become a major source
of security risks to the Android software supply chain. A
recent study shows that a malicious library could harvest data
from other libraries hosted in the same app via unauthorized
API accesses. However, it is unclear whether third-party
libraries could still pose a threat to other libraries after their
code and APIs are thoroughly vetted for security.

A third-party Android library often contains diverse
resources to support its operations. These resources, along
with resources from other libraries, are managed by the
Android resource compiler (ARC) during the app build
process. ARC needs to mediate the resources in case multiple
libraries have duplicate resources.

In this paper, we report a new attack surface on the Android
app supply chain: duplicate resource mismediation (Duress).
This attack surface provides an opportunity for attackers to
contaminate security- and privacy-sensitive resources of a
victim library by exploiting ARC, using duplicate resources
in malicious libraries. Our attack cases demonstrate that with
several effective attack strategies, an attacker can stealthily
mislead the victim library and its users to expose sensitive
data, and lower down the security protections, etc. Further, we
conduct the first systematic study to understand the impacts of
Duress risks. Our study has brought to light the pervasiveness
of the Duress risks in third-party libraries: an analysis of
over 23K libraries and 150K apps discovered that 18.4%
libraries have sensitive resources that are exposed to Duress
risks, 25.7% libraries have duplicate sensitive resources with
other libraries, i.e., integration risks, and over 400 apps in the
wild are affected by potential occurrences of Duress, etc. To
mitigate the risks, we discuss a lightweight and compile-time
resource isolation method to prevent malicious libraries from
contaminating the sensitive resources of other libraries.

∗The two lead authors contributed equally to this work and are ordered
alphabetically.

1 Introduction

Today’s mobile apps increasingly rely on the software supply
chain, third-party libraries (a.k.a., software development kit
or SDK) in particular, to provide essential functionalities, like
advertisement, analytics, and in-app payment, etc. Integration
of the libraries from less reliable sources, however, could
bring in security and privacy risks. Prior research shows that
the libraries provided by a contaminated supply chain, once
integrated into a mobile app, can harvest private data from
the app [37, 43, 70, 83, 85, 109] and abuse its privileges and
resources [42, 61, 87]. A more recent study further shows
that a malicious library could attack other libraries hosted in
the same app, e.g., through unauthorized access to the APIs
of these libraries to exfiltrate their sensitive information [96].
Natural solutions to mitigate such security risks introduced
by the software supply chain include static vetting of library
code and runtime inspection of its behavior, to ensure that
all known malicious activities (e.g., unauthorized access
to another library’s API) will not occur. Surprisingly, we
found that even under such protection, a stealthy attack is still
feasible across third-party libraries, thanks to a new attack
surface on the Android software supply chain.

Duplicate resource mismediation. More specifically, a
software supply chain includes the components, libraries
and tools, and the processes for developing, building and
publishing software [45]. For the Android app, a key step
in its build process is to package all its resources, including
those belonging to the third-party libraries it integrates.
Android libraries (Android Archive, AAR) [6] typically
contain diverse resources to support their operations, such
as a manifest file [3, 6], asset files that often include
JavaScript, and XML resource files that define the libraries’
configurations for network security, backup, etc. (Section 4.1).
These resources, together with the resources from the app,
are managed by the Android resource compiler (ARC, as
defined by Gradle tasks in the Android Gradle plugin [2], see
Section 3) during the build process. For example, each library
and the app can come with a manifest file that specifies its
components (e.g., activities and services [5]) implemented in
the code and security-sensitive attributes of the components

(e.g., which app/component can access them); these manifests
are then merged by the ARC into a single file, allowing one
to easily audit all activities and services offered by the app.

A complication during this process is that multiple libraries
may have duplicate resources or incompatible attributes for
some resources. For example, the libraries mclib and sendto-
push both have a server_url parameter in their values.xml
files. When this happens, the ARC has to mediate the conflict,
for example, keeping one server_url setting in the merged
values.xml file. If the conflict is between a third-party
library and the app, the ARC can easily resolve it by sticking
to the app’s configuration (assuming the app’s server is not
malicious). However, a resolution becomes harder to get when
the contention happens between different third-party libraries,
since a wrong decision could have a serious consequence,
leading to a security breach: for example, if ARC keeps the
server_url of a malicious library, all messages issued by
the legitimate library will automatically go to the server under
the adversary’s control. This security risk, which we call
duplicate resource mismediation (Duress), is fundamental to
the app build process, due to the ARC’s lack of information
about individual libraries’ trustworthiness and the absence
of isolation between library resources at build time. Given
the diversity in library resources and the important roles they
play in the host app’s configuration, Duress can have serious
security and privacy implications. Despite the importance of
the problem, little has been done so far to understand Duress,
not to mention any attempt to control this new attack surface.

Duress attacks. In our research, for the first time we sys-
tematically investigated the Duress risks. We explored how
ARC mediates duplicate resources from third-party libraries,
and introduced a new attack surface in ARC that allows
attackers to compromise resources of a victim library using a
malicious library compiled in the same app. The Duress risks
are problems in ARC – part of the app building systems such
as Android Studio, rather than the Android operating system.
They are inherent to the Android app supply chain, specifi-
cally due to untrusted, malicious/invasive third-party libraries.
These risks may lead to different categories of security attacks
that can either lower down the protection of other libraries, or
mislead users or the libraries to perform insecure operations.

The first category is insecure resource deduplication
(Section 3.2). ARC allows a high-priority library to directly
override the resources (e.g., assets, manifest attributes) in a
low-priority library. This policy becomes a security weakness
if the adversary is capable of raising a malicious library’s
priority over that of a legitimate library being targeted, which
was found to be feasible (Section 3.1). When this happens,
the resource crafted by the adversary will replace the sensitive
resource of the target library. For example, we found that the
SDK of Razorpay, a popular Indian payment platform, has
a CDN URL that can be overwritten by the link provided by
a malicious library; as a result, sensitive user data, including
banking OTP, and user credentials of Amazon Pay, Paypal and

others, will be exposed to the adversary (Section 3.2). As an-
other example, we found that a malicious library could replace
the AWS credentials included in the SDK of MistPlay – a
leading play-game-to-earn platform, so as to mislead the SDK
to upload gamers’ streaming data to an attacker-specified
AWS account (Section 5.4). Notably, unlike the prior attacks
in which unauthorized operations are performed by malicious
code, the Duress attack does not involve any illicit action, as
all required changes to an app’s resources are done by ARC.

In the second category is insecure resource merge
(Second 3.3). ARC is designed to merge duplicate manifest
elements (e.g., declarations of the same activity), instead
of overriding one with another, whenever possible (in the
absence of conflicting attributes). Most importantly, ARC
allows a library to declare a component even though the
component’s code is defined in another library. As a result,
the adversary can strategically select the attributes missing
in the target library’s manifest and configure them in the
manifest of the malicious library, in an attempt to lower down
the target library’s protection. An example is the internal
WebView in the applovin library, whose manifest can be
contaminated by the malicious library during the merger
with android:exported and deeplink-related intent filters,
rendering the WebView remotely accessible to the adversary
(via a malicious website or deeplinks from a third-party app).

Finding Duress risks in the wild. To understand the scope
and impacts of the Duress risk on the Android software
supply chain, particularly the pervasiveness of sensitive
resources in libraries, duplicated resources across libraries,
and apps affected by duplicate resources, we developed a
methodology to automatically detect the attack opportunities,
integration risks and affected apps. A key challenge is how to
identify sensitive resources, not only from highly-structured
library resources, such as manifest attributes predefined
by Android, but also from ad-hoc resources specified by
library developers. To this end, we utilize a semantic-driven
approach to cluster library resources, label the clusters with
sensitive resource types, and then classify other resources
to these clusters based upon their semantic closeness to the
clusters. In this way, our approach identifies 10 security- or
privacy-sensitive resource types (clusters), such as cloud
backend URLs and credentials that can be used to compro-
mise the backend servers and cause data exposure, privacy
disclosure related to privacy compliance, technical support
messages that can be exploited for technical support scams,
etc. Once the sensitive resources are detected in libraries, we
further perform cross-library and library-app analysis to find
the integration risks and their impacts on real-world apps.

We ran our methodology on two datasets with over 23K
libraries and 150K apps and, to our surprise, discovered that
18.4% libraries could be exposed to the Duress threat, given
their involvement of sensitive resources. Exploiting these op-
portunities, the adversary could mislead users and libraries
or lower down their protection, e.g., cheating the users of

Dolyame.ru (the first buy-now-pay-later platform in Russia)
into communicating with a technical support scammer, open-
ing doors for man-in-the-middle (MITM) attacks in HitPay (a
payment gateway used by 10K+ merchants in Singapore) by
contaminating the certificate pinning in the library’s network
security configuration, etc. Among the libraries with sensitive
resources, we found that 25.7% of them have duplicate re-
sources with other libraries in the wild (i.e., integration risks).

Further, we observed that more than 400 apps are at high
risk of Duress threats, because they integrated different li-
braries that share highly sensitive resources, leading to un-
wanted app behaviors, e.g., introducing insecure attributes into
manifest files, exposing user files with file providers, and pol-
luting network security configurations, etc. In particular, we
found that even popular libraries, such as Appsflyer and Vun-
gle, are competing with each other when specifying backup
files in their manifests. Their recommendations for resolving
such conflicts are interesting: rather than generating a consoli-
dated version of the backup rules, they both recommend devel-
opers to override the backup rules of the other library, causing
the backup policies of the other library to be disabled and li-
brary data to be unexpectedly exposed to the Google Drive or
adb accesses. We reported our findings to all affected parties
(i.e., Google, and app developers) and also discuss the poten-
tial mitigation of the Duress risks. We released our datasets,
attack demos, and responses from affected parties online [24].
Contributions. We outline the paper’s contributions below:
• Discovery of the new attack surface. We discovered a new
attack surface on the Android software supply chain, whose
build process cannot effectively mediate duplicated resources
from different libraries. This opens an opportunity for the
adversary to contaminate the supply chain with a carefully
crafted library to perform a highly stealthy, cross-library
attack, which lowers down a target library’s protection or
misleads the target or its users to expose sensitive information.
• Understanding of the new threat. We performed the first
systematic study on the impacts of the new threat. Our anal-
ysis has brought to light the pervasiveness of the risks on the
supply chain and even the presence of potentially affected real-
world apps, which highlight the importance of elevating secu-
rity protection of today’s supply chain to address the threat.

2 Background
Using third-party libraries in Android app supply chains.
App developers often integrate third-party libraries into the
app supply chains in order to ease app development process
with function reuse. These libraries, although facilitating
faster development, have become the major cause of app sup-
ply chain attacks: the untrusted libraries are compiled in the
app package and will run in the same space as app’s first-party
code and other libraries. Therefore, they can lead to various
attacks targeting the app [37, 42, 43, 61, 70, 83, 85, 87, 109],
and even the other libraries hosted in the same app [96].

In addition to the code, also introduced in the supply

chains by the third-party libraries are the library resources.
Specifically, Android libraries (Android Archive, AAR) may
contain all types of resources that an app can have [1, 4],
e.g., a manifest file that defines the properties of library
components and required hardware/software features, several
XML files that store library strings and layouts, and even
security-related configuration files. Because many library
resources are highly sensitive, any unexpected modifications
to them may lead to serious security and privacy concerns.
Building third-party libraries into Android apps. Android
has developed a fully-automated build process to manage
third-party libraries, and compile them into an app package.
Figure 1 shows an overview of this process. In the first step, an
app developer declares the libraries as app dependencies in a
configuration file such as build.gradle. Then, the configura-
tion file is passed to Gradle for automatically resolving the de-
pendencies. Essentially, Gradle runs a few tasks [57] to check
transitive dependencies (i.e., dependencies of a dependency),
resolve dependency version conflicts, and retrieve dependen-
cies from remote repositories (if necessary), etc. The output
of dependency resolution is a set of libraries (including code
and resources) cached in local directories, and a dependency
graph that represents the relations between different libraries.

In the next step, the build tools compile the code/resources
of all the app and library modules before packing them into
an APK. Specifically, Android uses several code compilers
(such as dx) to compile and then assemble the code into
a single DEX file. Further, Android leverages an Android
resource compiler (ARC) in the form of Gradle plugins to
compile and combine library resources.
Processing library resources with ARC. Ideally, ARC
should put the resources of all third-party libraries into one
APK in their original format. However, duplicate resources
are common across libraries for a number of reasons, such as
common resource names used by library developers (which
we discuss in Section 5.2). Hence, ARC needs to mediate
duplicate resources to avoid future app errors. The current
implementation of ARC supports two methods for resource
mediation, i.e., resource deduplication and resource merge.
The key idea of these methods is to sort third-party libraries
from high priority to low priority according to the order in
which they appear in the dependency graph. Then, ARC scans
each library for resources, and prioritizes the resources from
high-priority libraries during resource mediation.
Threat model. In this work, we study the app supply chain
security risks posed by malicious third-party libraries. More
specifically, we focus on the faulty logic in the app build
process of Android resource compiler (ARC), and reveal a
new threat that is not currently defended against by Android
build system – a malicious library can negatively impact the
sensitive resources of a victim library within the same app,
using duplicate resources during the app build process. We do
not consider malicious app/library code or vulnerabilities in
the operation systems, which may or may not lead to similar

Figure 1: Overview of app build process

security consequences.
We assume that the adversaries of our concern, i.e., devel-

opers of malicious third-party libraries, can gather resource
information of victim libraries from public sources on the
Internet or by inspecting them from public apps that use the
victim libraries. The adversaries can practically promote and
get their malicious libraries integrated by many apps, such
as by offering monetary incentives or useful functionalities
(e.g., advertising, analytics), as reported in prior work [96],
as well as by exploiting other attack vectors in the app supply
chain, e.g., dependency confusion attacks [34]. The malicious
libraries can appear as direct dependencies, or transitive de-
pendencies that are auto-resolved and retrieved by Gradle, etc.

In the meantime, developers of victim libraries may not
be fully aware of the threats and implications when the
resources of their libraries may be conflicting with those
of other libraries in the same app, considering the diverse
resources (Table 1) and the less known logic of how ARC
may mediate the conflicts.

3 Duress Attacks on Android
As we introduced earlier, resources in high-priority libraries
are prioritized by ARC during the app build process. There-
fore, for Duress attack to succeed, attackers first need to
increase the priority of their malicious libraries to ensure
that the resources in these libraries are picked up by ARC. In
this Section, we start by describing how ARC determines the
priority of libraries, and then propose several strategies that
attackers can take to raise the priority of malicious libraries.
Based upon the strategies, we illustrate the design of ARC in
mediating duplicate resources and discuss how such design
can be exploited in practical Duress attacks.

3.1 Raising Priority of Malicious Libraries
Determination of library priorities. At a high level, the re-
sources of an app project are from three conceptual sources:
app modules, local libraries, and remote libraries. The app
modules refer to the first-party modules that are defined by
app developers, such as debug/release build variants. To use
a library, the app needs to declare it as a dependency in the
build.gradle file. The library could be a library available in
a local directory (local library) or on remote repository hosting
services (remote library). Our investigation shows that, in the
app build process, the app modules have the highest priority,

Figure 2: Determination of library priorities

followed by local libraries and remote libraries (Figure 2 (a)).
The priorities of the libraries within the local or remote

categories are decided by the dependency graph and the
built-in traversal algorithms of Gradle. In Figure 2 (b), we
present a most simplified dependency graph: Libraries L0,
L1, and L2 are declared in order in the build.gradle file,
and L1 is a transitive dependency of L2. Gradle adopts two
rules to determine the priorities of these three libraries. First,
it uses a “consumer-first’ order which prioritizes a library
over its dependencies. Hence, L2 has a higher priority than
its dependency L1. Second, Gradle honors the ordering
of the dependency declarations in build.gradle. As a
consequence, L0 has a higher priority than L2 since L0
is declared earlier. Combining the two rules, we have the
priorities of the three libraries: L0 → L2 → L1.

Strategy-1: Riding on victim libraries. Given the “consumer-
first” rule, a straightforward approach to raising the priority
of a malicious library is to turn it into a consumer, i.e., adding
victim libraries as dependencies to the malicious library.

This approach is super helpful when targeting a few
high-profile victim libraries. However, there are potential
challenges to target a large number of victim libraries, which
is often the case for attackers. First, in this case, the malicious
library has to add all of the victim libraries as dependencies,
which will introduce significant overhead to the apps since the
dependencies have to be compiled in the apps, even for the
apps that don’t use the dependent libraries. Also, a library that
depends on an unreasonable number of libraries (that provide
irrelevant functionalities) can quickly draw the attention of
app developers and even library scanning tools. Therefore,
a more advanced strategy is necessary to scale up the attack.

Strategy-2: Riding on Android platform libraries. We
noticed that apps often rely on a few Android platform
libraries (such as androidx.appcompat). These libraries are
preset by Android Studio, and are usually located in the very
beginning of the build.gradle file. Thus, in practice, the
platform libraries may have higher priorities than third-party
libraries. An attacker can design his strategy by combining
this observation with the “consumer-first” rule: instead of de-
pending on victim libraries, the malicious library can elevate
its priority by depending on a crafted list of platform libraries.

To confirm the effectiveness of this strategy, we
created a demo library that depends on three most fre-
quently used platform libraries, i.e., androidx.appcompat,
com.google.android.material and androidx.constraintlayout,
and published the library on Maven Central [23]. Then we col-

lected 100 build.gradle files from 97 open-source projects
on GitHub, and added the demo library as a dependency
to the very end of the files. We checked whether the demo
library can achieve a higher priority than the other third-party
libraries when ARC compiles the 100 build.gradle files, by
inspecting the library priorities in ARC. The result proved our
hypothetical strategy: the demo library has a higher priority
than 96.7% (1,717 out of 1,775) third-party libraries that
are used by the open-source projects. Most of the remaining
3.3% libraries (such as com.tencent.edu) rely on platform
libraries as well, but we believe attackers can handle them
by ensembling multiple strategies.
Discussion. Notably, the demo library we temporarily posted
on Maven Central is for an end-to-end, proof-of-concept
implementation and confirmation of Strategy-2, which
demonstrates the practicality of the strategy in the wild. It
does not carry any functional code or sensitive resources.
In the library’s description, we highlighted that the library
was for testing purposes and should not be used without
contacting us. We also removed the library immediately
after our experiment (after two days). If, by any chance, a
developer used the library, the only change to the developer’s
project is the introduction of the three platform libraries
developed by Google (e.g., androidx.appcompat, which are
commonly used by apps and are benign.
Strategy-3: Distributing malicious libraries as “local”
libraries. It is infeasible for an attacker to affect the order of
libraries declared in the build.gradle file of an app, since
the order is mostly specified by app developers. However, the
attacker can actually affect the way his malicious library can
be integrated into an app, i.e., in the form of a local or remote
library, which leads to another potential attack strategy.

Recall that local libraries have higher priorities than
remote libraries. Therefore, to compromise libraries that are
published on remote repositories, an attacker can distribute
and promote his malicious library on websites, technical
forums, or even code repositories like GitHub, and then
instruct the app developers to download and import it as a
local library. With this strategy, the malicious library may
gain a higher priority than any remote third-party libraries.

3.2 Insecure Resource Deduplication
Resource deduplication mechanism. The most commonly
used resource mediation method is deduplication, i.e.,
overriding one resource with another. To understand how
it works, we systematically investigated library resources
located in 19 different directories, as specified in Android
official documentations [1, 4] (second column of Table 1).
Then, we analyzed the ARC source code, and found that these
resources are handled by multiple Gradle tasks in ARC, e.g.,
MergeResources task covers duplicate res/* files and Merge-
Assets task covers assets/* files. In Table 1, we present the
library resources and associated ARC tasks. Our study shows
that although the resources differ, their corresponding tasks

Figure 3: Resource deduplication mechanism (the gray boxes
represent the libraries whose resources are selected)

actually share a base implementation called DataMerger.
Hence, below we focus on the illustration of DataMerger.

Table 1: Library resources and corresponding ARC tasks
Resource Type Resource Examples Gradle Task Risk
Native debug .so.dbg/.so.sym files MergeNative n/a§
metadata Metadata

attr, bool, color, dimen,

MergeResources 1Android-specific id, integer, string, xml,
resources drawable, style, stylable,

mipmap-*, layout
Shader .shader files MergeShaders 1
Assets assets/* files MergeAssets 1
Jni libs folder jniLibs/* files MergeJniLibFolders 1
Native libs folder libs/*.so files MergeNativeLibs n/a†

Java resources *.class, META-INF/* MergeJavaResource n/a†

Manifest AndroidManifest.xml ProcessMainManifest 2
3

§ Not available in production apps; † ARC raises compile errors on duplicate resources.

As a first step, the DataMerger assigns a priority value to
each library based on the dependency graph generated by Gra-
dle (Section 3.1), and sorts the libraries into a list according
to their priorities. Then, it scans the library resources in order
from the high-priority to low-priority libraries. The outcome
of this step is a resource map, where the key of the map is the
resource name and the value is the list of libraries (which is
also ordered by priorities) that contain such resources. In the
last step, based on the resource map, the DataMerger uses
the resources from the highest-priority library to override
the duplicate resources of other libraries (see Figure 3). This
process ensures that all library resources that get compiled
into the apps are from the highest-priority libraries. Note that
the resources from other libraries are overridden by ARC in
the background, without letting the app developers know.
Duress Risk-1: Resource-Overriding. In light of the
deduplication mechanism, if a high-priority malicious library
creates a crafted resource that duplicates with a sensitive
resource in a victim library, the ARC would replace the
resource in the victim library with the crafted resource. Then
at runtime, the victim library will automatically pick up
the crafted resource. Although this attack looks technically
simple, it can lead to serious security issues as the crafted
resource can effectively mislead the victim library or its users
into performing insecure operations.

Razorpay SDK is a potential target for such an attack.
Razorpay [78] is a leading online payment solution in In-
dia, which has helped over 5M businesses (including Face-
book, Disney and PizzaHut) to process customer payments.
We found that the Razorpay SDK uses a resource file
(res/raw/rzp_config.json) to store SDK configurations,
in particular its CDN URL (https://cdn.razorpay.com).
The SDK uses the hard-coded CDN URL to download a

JavaScript (JS) file otpelf.js, and then loads the JS code
into a WebView for processing the online banking one-time
password (OTP). Our investigation shows that an attacker
can conduct the Duress attack by providing a duplicate
rzp_config.json file with a fake CDN URL within his ma-
licious library. At compile time, if the malicious library and
the Razorpay SDK are both added as app dependencies, and
the malicious library owns a higher priority, ARC will use the
duplicate file containing the fake URL to replace the file in the
Razorpay SDK. At runtime, the fake URL will be picked up
by the victim library automatically. This allows the attacker to
distribute and load arbitrary JS code into the Razorpay’s Web-
View, leading to attacks such as gathering OTP from end users.
Furthermore, Razorpay SDK uses the same WebView for
federated authentication to multiple payment platforms, e.g.,
Amazon Pay and Paypal, etc. Therefore, the malicious code is
also capable of collecting credentials of these payment plat-
forms, by continuously monitoring the DOM interfaces. Also
interestingly, we suspect that Razorpay is aware of the risk
since the JS code distributed by the CDN is encrypted. How-
ever, the encryption won’t be able to eliminate the attack from
malicious libraries: an attacker can easily reverse engineer the
SDK to recover the encryption procedure and the symmetric
key, and then encrypt the malicious code before distributing
it. Please refer to our website [24] for more attack details.
Duress Risk-2: Manifest-Overriding. Another risk that is
worthy of a separate discussion is the manifest deduplication
risk. Library developers can place security protections on
the library components using certain manifest attributes,
e.g., adding android:permission to a content provider
can limit its access to only clients (or apps) that have the
permission. However, we noticed that Android provided a
set of node markers (e.g., tools:replace, tools:remove)
to high-priority libraries for defining custom duplicate me-
diation rules. For example, by placing the tools:replace
marker to an element in the manifest file, a developer can
tell the ARC to replace certain attributes in the lower-priority
manifest files using the attributes in the current manifest file.

These node markers contribute to the resolution of con-
flicts between an app/library and its dependencies. How-
ever, they could be abused by malicious libraries as well.
Specifically, in cases that a malicious library obtains a higher
priority in the app build process, it is capable of manipu-
lating any manifest attributes (including security-sensitive
ones) within a lower-priority library, potentially lowering
down the protections that were already in place in the vic-
tim library. An example is the HUAWEI Mobile Services
SDK. By default, its content provider that stores push notifica-
tions (PushProvider) is only accessible to apps that have
permission.PUSH_PROVIDER permission. However, with
this Duress attack, a malicious library can remove this protec-
tion by overriding the android:permission attribute, and
open the content provider’s access to any other untrusted apps.
Discussion. We observe that many third-party libraries

contain resources that are intended to be exclusively used by
the libraries’ code. Library developers may assume that these
resources are authentic even after the libraries were integrated
into apps. The presence of resource deduplication in ARC ef-
fectively breaks this assumption in cases where the resources
from different libraries share the same name. An example is
the privacy_url used by both Maxpay and Genome. In order
for the libraries to display their own privacy policies within
the same app, a reasonable solution for ARC might be pro-
viding several copies of privacy_url for the two libraries,
rather than allowing one to override another. This leads to
our mitigation proposal that we should provide isolation for
highly-sensitive resources (see discussions in Section 5.5).

We are not trying to diminish the value of ARC’s work in
deduplicating resources, since it not only helps to shrink the
sizes of apps but most importantly reduces the developer’s
effort in handling a large number of duplicates (e.g., our eval-
uation of the datasets in Section 5 shows that a library has
an average of 2.7 duplicate resources with any other library).
However, we believe that there are potential improvements
that ARC can make to reduce the Duress risks. First, given that
highly-sensitive resources are also deduplicated, a responsible
action for ARC could be alert or provide more control to app
developers when such resources are to be deduplicated (which
is also confirmed by Google’s response, see Section 5.3). Sec-
ond, since resource deduplication is done following the li-
braries’ priorities. It might be helpful for ARC to allow app
developers to define the priorities in this process, to ensure
that the resources in the most trustworthy libraries are chosen.

3.3 Insecure Resource Merge
In addition to resource deduplication, another natural choice
for processing duplicate resources is to merge them into a
single target. This choice is necessary for manifest. Manifest
files are commonly used by apps and libraries as a global
registry to register app/library components, permissions,
and required software and hardware features to the Android
system. Since only one manifest file is allowed in the
compiled app, ARC needs to merge all the manifest files into
one using manifest-related tasks, e.g., ProcessMainManifest
or ProcessManifestForPackage.
Manifest merge mechanism. The manifest merge process
follows the same library priorities as resource deduplication.
Not surprisingly, the tasks first scan the libraries according
to their priorities, and insert a library into a manifest provider
list if the library has a manifest file. Then, the tasks take the
manifest file of the main app (i.e., app developer’s manifest)
as the initial merging result, and process the libraries in the
manifest provider list from the high- to low-priority libraries.
In this process, the tasks merge the manifest files sequentially
into the merging result, therefore resulting in the merge order
of main app manifest → high-priority library manifest →
low-priority library manifest.
Duress Risk-3: Manifest-Merge. The above order de-

Figure 4: Merge manifest files

termines that the manifest file of a high-priority library
always takes precedence over that of a low-priority library.
Therefore, in cases where the low-priority library has a
conflicting manifest attribute with the high-priority library,
and a node marker (e.g., tools:replace) is not defined by
the high-priority library, ARC would raise an alarm to app
developers noting that the manifest files are not mergeable.
But a question that we need to ask is: for the mergeable
attributes in the low-priority manifest, is it always secure to
merge all of them directly into the high-priority manifest?

To answer this question, we look into an example in
Figure 4. As can be seen, the high-priority library uses a
WebView activity com.high_priority.WebViewActivity
to load web content, e.g., from websites or web ads. This
activity is designed to be app/library internal (e.g., for
preventing potential WebView-based attacks), and therefore
is not exported externally. Unfortunately, our study reveals
that a low-priority library, although it does not own the code
of WebViewActivity, can declare the same activity and add
extra attributes to it. Since the extra attributes don’t conflict
with the original declaration in the high-priority library,
they are merged into the final manifest file automatically.
We believe that the addition of the extra attributes may
break the security promise of the high-priority library by
lowering down the security protections. In Figure 4, by
adding the android:exported and deeplink-related intent
filters, the activity is not internal to the app anymore. Instead,
it turns into a “backdoor” that can be invoked remotely via
malicious website or untrusted apps by issuing deeplink
URLs. According to our measurements, 255 libraries,
including popular ones such as applovin and stripe, contain
similar WebView activities that can potentially be affected by
this attack. It is important to note that, in addition to lowering
down security protections in place, merging extra manifest
attributes can lead to other security consequences, such as
denial of service by making exported components internal.
Discussion. The major cause of the above risk is that a
malicious library can freely declare a manifest component
even though it is not implemented in the library code,
allowing the library to merge sensitive manifest attributes into
other libraries and even the main app. Therefore, it could be
reasonable for ARC to track the ownership of the component,
and only authorize the component owners to declare the
component and set up security-sensitive attributes.

Figure 5: Overview of the methodology

It appears that Android has already taken a step towards
limiting the use of security-sensitive attributes: for apps that
target Android 12 and higher, an android:exported at-
tribute needs to be explicitly specified for all components that
define an intent filter [54]. This requirement seems to reduce
the opportunity for attacks that exploit this specific attribute,
since an alarm will be raised to app developers if the manda-
tory attribute is missing. However, our analysis proved that it
is not the case because the requirement is checked right after
all manifest files from third-party libraries are merged by ARC.
In other words, attackers can still exploit the above risk with
a malicious library so as to change the android:exported
setting of a victim library, without violating the requirement.

Further, prior research [26] showed that the Android OS
(such as PackageManagerService) can not handle the regis-
tration of duplicate manifest components when installing an
app, i.e., a component can override another component with
the same name. Compared to this research, Risk-3 focuses
specifically on the ARC issue of merging manifest attributes
from multiple libraries at app build time. Risk-3 complements
prior understanding of the security of duplicate manifest
components by presenting a new attack vector in the design
of ARC. In particular, Risk-3 is independent of prior Android
OS issues, and thus the attacks can still occur on the latest
Android 13 release even after the prior OS issues were fixed.

4 Methodology
In Section 3, we made the first step by unveiling the Duress
attacks. A comprehensive study, however, has not been
conducted to understand Duress in the wild. In this section,
we introduce our methodology for carrying out such a study,
through which we answer three research questions.
• Q1: Library attack opportunities. How many libraries
contain sensitive resources that Duress attacks can target?
• Q2: Library integration risks. How likely can a library’s
sensitive resources be contaminated by another library, if
they are integrated into the same app?
• Q3: Apps affected by Duress risks. Are there any real-world
apps that may have been affected by Duress risks?
Overview. Figure 5 presents the overview of our methodol-
ogy. In the first step, we build a library dataset and an app
dataset by crawling Maven Central [23] and Google Play [50],
respectively. After that, we identify the sensitive library re-
source types, since the actual security consequences of Duress
attacks vary depending on the resource types. In the next step,
we run three tasks to answer the above research questions.
The first task is attack opportunity analysis (Q1), in which we

scan the libraries in our dataset to detect sensitive resources
and the associated Duress risks. The second task is integration
risk analysis (Q2), in which we conduct cross-library analysis
to identify if two libraries share duplicate sensitive resources.
The third task is to detect apps that are potentially affected
by Duress risks (Q3). For this purpose, we identify all
libraries that are integrated into the apps, and check if the
aforementioned integration risks are present in the apps.

4.1 Identifying Sensitive Resource Types
While library resources are from a variety of sources and
are of different forms (Table 1), we found that they fall into
two main categories: manifest resources whose resource keys
are predefined by Android, and other resources specified
by library developers, such as constant values (e.g., strings)
and raw resource files (e.g., assets. The distinction of the
categories requires us to treat them differently.
Manifest resources. Our approach to identifying sensitive
manifest resources (or attributes) is straight-forward. We first
crawl Android documents [47] to gather the complete list of
manifest attributes. We then search from public sources, i.e.,
CVE [41] and Google Scholar [52], to check whether these
attributes have been mentioned in known vulnerabilities or re-
ported by previous security and privacy research. Specifically,
we use keyword matching to find the manifest attributes in
CVE descriptions. For Google Scholar, we search those at-
tributes together with a “security” or “privacy” keyword. We
review the top 10 search results (sorted by relevance) for each
attribute to find its security implications. In total, we searched
122 unique manifest attributes that cover 30 different manifest
elements (e.g., application, activity), and were able to identify
14 sensitive ones reported by 16 previous studies and 6 CVEs.

Examples of the sensitive manifest attributes are the
android:exported attribute that leads to the exposure of
library components, the android:taskAffinity attribute
that can result in task hijacking, the android:allowBackup
and android:usesCleartextTraffic attributes that affect
backup/network behaviors of an app, etc. In Table 2, we
show the full list of the attributes, along with the security and
privacy implications of unauthorized modification.
Other developer-specified resources. Identifying the other
types of sensitive resources is challenging, given the large
number of library resources that are specified by library
developers in an ad-hoc manner. To address the challenge,
our observation is that although the exact resources of
different developers don’t match, they are often semantically
connected. An example is the technical support messages,
e.g., com.dji uses a message “if the problem persists, contact
dji support”, and app.moneytree.link shares a similar one “an
error occurred. please contact moneytree support”. Therefore,
we can leverage this observation to reduce the number
of library resources by clustering them using semantic
similarity, and then request security experts to review the
clusters to determine whether the resources are security- or

privacy-sensitive and what the resource types are.
Specifically, we first randomly sampled 1,000 libraries

(from our library dataset in Section 5), and collected the re-
source names and values in the form of text data. Then we vec-
torized the text data using a pre-trained embedding model all-
mpnet-base-v2 [89]. After that, we applied a hierarchical clus-
tering algorithm on the distance matrix of the embeddings to
find the clusters of similar resources. Particularly, we adopted
fastcluster [69] with average linkage on the cosine distance.
We also used a relatively small distance threshold (i.e., 0.4),
for the purpose of creating closely-connected clusters. The
output of this step is 1,016 resource clusters (from a total of
12,432 resources) that contain at least three similar resources.

We asked two security researchers to independently review
the 1,016 clusters and determine whether they represent
sensitive resources. The inter-rater reliability measured
by Cohen’s kappa for this process is 0.84 (nearly perfect
agreement). Then, the two researchers resolved disagreement
with on-site discussion, and categorized the clusters into
different resource types according to the security and privacy
implications. Through this process, we were able to identify
74 sensitive resource clusters, corresponding to 10 unique
resource types (we released the resource clusters online [24]).

As shown in Table 2, the resource types include the cloud
backend URLs and credentials that may lead to compromise
of the backend servers and user data leakage, the privacy
disclosure that concerns the privacy compliance of library
developers, the technical support messages that are subject
to technical support scam and potential user data leakage,
and various types of configuration files that affect network
security, backup rules, and file providers, etc. Note that
although these resource types are far from complete, they
allow us to perform an under-estimation of Duress risks in
the wild (see Section 5).

Table 2: Security/Privacy sensitive resources and their implications
Manifest resources (attributes) Security/Privacy Implications
android:allowTaskReparenting Hijack tasks [12, 73, 79, 99]android:taskAffinity
android:allowBackup Data leakage [9, 10, 32, 65, 103]android:fullBackupContent
android:debuggable Attach untrusted debuggers [60]
android:priority Hijack broadcasts [8, 88]
android:exported Export internal components [7, 11, 27, 36, 58, 102]
android:isolatedProcess Disable isolation [38]
android:launchMode Hijack tasks [79, 99]
android:networkSecurityConfig MITM [71, 75], Permit cleartext traffic [62, 71, 75]
android:usesCleartextTraffic Permit cleartext traffic [62, 71]
android:readPermission Unprotected content providers [26, 58]android:writePermission
android:permission Unprotected components [26, 58]

Developer-specified resources Security/Privacy Implications
Backend URL Data leakage [93, 98, 110, 111],
Credential Inject malicious code/content [98]
Script code Inject malicious code [44, 107], Data leakage [33]
Privacy disclosure Privacy non-compliance [29, 82, 97, 104]
Technical support Technical support scams [67, 84]
Referral message/link Redirect users to phishing/malware links [16]
ML model Plant ML backdoors [46, 80]
Network security config MITM [71, 75], Permit cleartext traffic [62, 71, 75]
Auto backup rule Data leakage [17], DoS [68]
File provider path Data leakage and overriding [15], DoS [72]

4.2 Library and App Analysis

Attack opportunity analysis. We identify attack opportuni-
ties by classifying library resources into the aforementioned
sensitive resource types and Duress risks.

The way we classify manifest attributes is trivial: we
parse the libraries’ manifest files with minidom, and
check the presence of the 14 sensitive attributes from
the files. If a sensitive attribute is in the secured state
(e.g., android:exported=“false”), we report an attack
opportunity for Risk-2 (Manifest-Overriding) as the secure
protection can be lowered down by resource deduplication
(Section 3.2). Similarly, if a sensitive attribute is applicable to
an element but it is absent from the manifest files, we report
an opportunity for Risk-3 (Manifest-Merge): the attribute can
be merged by malicious libraries (Section 3.3).

For the other app-developer-specified resources, we clas-
sify them based on their semantic closeness to the 74 labeled
resource clusters (Section 4.1). Specifically, we calculate the
average cosine similarity between the embeddings of a re-
source and that of the resources in a cluster. To decide whether
the resource belongs to the sensitive resource type represented
by the cluster, we need a similarity threshold. In this study, we
choose the threshold based on the average pairwise similarity
between all resources in the cluster. We report the resource
as an attack opportunity for Risk-1 (Resource-Overriding) as
long as its similarity to the cluster is higher than the threshold.

Our measurement shows that sensitive resources are
pretty common among libraries: about 18.4% libraries
contain sensitive resources, which represent a large scale of
opportunities that Duress attacks can target (Section 5.1).

Integration risk analysis. An integration risk refers to a pair
of libraries that share duplicate sensitive resources, which, if
integrated into the same app, can result in Duress attacks. To
evaluate the integration risks, we take the input of the maps
between libraries and their sensitive resources, and perform
cross-library comparisons to find the duplicate sensitive
resources that have the same name but different values. Using
this method, we were able to report that, among all libraries
that have sensitive resources, 25.7% libraries are threatened
by other libraries in the wild (Section 5.1).

Analysis of potential Duress occurrences in apps. In this
step, we identify real-world apps that are affected by the above
integration risks, i.e., apps integrating any pair of libraries
that have duplicate sensitive resources. For this purpose, we
first need to accurately identify which libraries are used by
an app. This task, i.e., third-party library detection, has been
well discussed in recent years [31, 66, 106, 108]. Therefore,
instead of creating our own tool, we leverage an open-source
and state-of-the-art library detector – LibPecker [108], which
not only achieves a good precision, but is also resistant to
code obfuscations, elimination, etc. Specifically, for each app,
we run LibPecker on all libraries to determine the similarities
between the app and the libraries. We use a similarity

threshold (0.6 as used by LibPecker) to tell which libraries
are integrated by the app. Then, if any pair of libraries that
have duplicate sensitive resources is detected in the app, we
flag the app as potentially affected by Duress risks.

5 Findings and Analysis
Datasets. We collected two datasets in July 2022. The first
dataset is a library dataset (Dl), which contains 23,691 most
recent versions of AAR libraries that were crawled from
Maven Central [23] – the most popular public repository
hosting third-party libraries. The other dataset is an app
dataset (Da) that includes 156,266 apps from Google Play. To
obtain this dataset, we first gathered a list of package names
for 7.2M Google Play apps (from AndroidZoo [28]). Then,
we randomly shuffled the list to generate a subset of apps
that approximates the Google Play distribution, and used a
crawler [25] to download the apps from Google Play. Until
this work was done, we were able to download and analyze
156,266 apps, with 74.4% apps updated after January 1, 2021
(51.6% in 2022 and 22.8% in 2021).

5.1 Landscape
To answer the aforementioned research questions, we
run our methodology on the library dataset (Dl) and app
dataset (Da). Table 3 shows the overall data for the library
attack opportunities, integration risks, and potential Duress
occurrences in apps, categorized by sensitive resource types.
Q1: Attack opportunities. In total, we detected that
4,349 (18.4%) libraries contain sensitive resources, which
represents a large scale of opportunities that attackers
may target with Duress attacks. Specifically, 2,063 (8.7%)
libraries contain sensitive resources that can be overridden by
malicious libraries with misleading content (Risk-1 Resource
Overriding); 2,281 (9.6%) libraries use security-sensitive
manifest attributes that can potentially be disabled by
high-priority malicious libraries using node markers (Risk-2
Manifest-Overriding). In addition, 2,561 (10.8%) libraries
fail to explicitly specify security-related attributes (e.g.,
android:exported, android:priority) in their manifest
files, which creates an opportunity for attackers to lower
down the security protection of manifest by merging extra
and insecure manifest attributes (Risk-3 Manifest-Merge).

We found the presence of all 10 types of sensitive resources
as listed in Table 2, from the 2,063 libraries affected by
Risk-1 Resource-Overriding. The most popular resource is
library technical support, which appears in 1,359 (5.7%)
libraries. As we will elaborate in Section 5.4, exploiting
such technical support, an attacker (or scammer) can claim
to offer legitimate support services via fake contacts so
as to launch practical attacks such as targeted phishing.
Another popular resource that appears in 584 libraries is
the privacy disclosures. Libraries adopt such disclosures,
e.g., privacy policies or in-app disclosures [51], in an effort
to become privacy compliant. Therefore, an attacker that

Table 3: Overall data of Duress risks on Dl and Da

Resource Type Attack Opportunities Integration Risks # Affected
Libs % Libs # Libs % Libs Apps

Risk-1

Backend URL 348 1.5 79 22.7 3
Credential 217 0.9 81 37.3 1
Script code 157 0.7 44 28.0 0
Privacy disclosure 584 2.5 93 15.9 0
Technical support 1,359 5.7 225 16.6 0
Referral message 200 0.8 40 20.0 0
ML model 20 0.1 2 10.0 0
Network security config 186 0.8 150 80.6 45
Auto backup rule 30 0.1 7 23.3 1
File provider path 460 1.9 283 61.5 76
Subtotal 2,063 8.7 719 34.9 126

Risk-2 Manifest attributes 2,281 9.6 450 19.7 137

Risk-3 Manifest attributes 2,561 10.8 184 7.2 168

Total 4,349 18.4 1,116 25.7 428

Figure 6: Potential Duress occur-
rences in apps

contaminates the disclosures can easily destroy the privacy
compliance of the libraries, causing serious privacy and even
legal risks [35, 39, 40, 91, 94]. Following these two types of
popular resources is the file provider path. We found that 460
libraries use the file provider path (an XML configuration)
to define which files can be shared with other apps via a
FileProvider [14]. As such, an attacker can potentially expose
the files that are not meant to be shared by contaminating the
file provider paths. The other types of resources are used by
fewer libraries, but they may also lead to serious security risks,
which we will demonstrate in case studies in Section 5.4.
Q2: Integration risks. Our methodology takes as input the
4,349 libraries that contain sensitive resources, and determines
if the resources lead to integration risks by conflicting with
any other libraries in Dl . As shown in Table 3 (6th column),
over 25.7% libraries cause risks when integrated into the same
app as other libraries. Specifically, libraries using network
security config are most likely (80.6%) to conflict with other
libraries, and can lead to the overriding and disablement of
another library’s network security policies. Similarly, 61.5%
libraries that use file provider paths conflict with some other
libraries in Dl . Another resource that can lead to high risks
is the credentials: about 37.3% of libraries that hard-code
credentials in their resources have duplicate credentials with
other libraries. Later, we will conduct a causal analysis to
show why duplicate resources are common across libraries.
Q3: Potential Duress occurrences in apps. We assess poten-
tial Duress issues that may have occurred in real apps based
on our datasets, i.e., Da with 156,266 apps and Dl with 23,691
unique libraries on their latest versions (both collected in July
2022). Specifically, by running LibPecker (a state-of-the-art
tool [108] to detect libraries in apps), we identified that 61,452
apps use third-party libraries listed in Dl , with each app having
an average of 5.9 libraries. We found potential Duress occur-
rences in at least 428 apps (denoted as a set Dduress_potential):
any app appd p in Dduress_potential includes at least two li-
braries denoted as lib1 and lib2 (lib1 ∈ Dl and lib2 ∈ Dl),
where lib1 and lib2 have resource conflicts enabling Duress.
We call (lib1, lib2) as a Duress-lib pair. In Dduress_potential ,
we report 123 unique Duress-lib pairs including 71 unique
libraries denoted as DuressLibs. We note that these apps

Dduress_potential likely have witnessed Duress since the latest
versions of the libraries have the resource conflicts, while a
complete, precise forensics analysis is hard due to the chal-
lenges to accurately identify library versions in the apps [105]
and recover resource conflicts that may have happened.

Specifically, the apps might not use the latest versions of
the libraries (DuressLibs), but rather use the earlier versions
that may or may not have Duress conflicts (the underlying tool
LibPecker generally does not accurately differentiate library
versions). To more precisely evaluate the results, we collect
all historical versions of DuressLibs that are publicly avail-
able on Maven Central [23]. To better understand likelihood
of Duress occurrences, for each app appd p in Dduress_potential ,
we do the following: for each Duress-lib pair (lib1, lib2) of
the app, we take those historical versions of lib1 and lib2 (de-
noted as two sets V Slib1 and V Slib2, respectively) published
before the release date of the app (app release dates are avail-
able on Google Play), and check Duress for every histori-
cal version pair, i.e., {(vlib1, vlib2) | vlib1 ∈ V Slib1, vlib2 ∈
V Slib2}. Hence, if all historical version pairs of lib1 and lib2
feature Duress conflicts, the app appd p highly likely has wit-
nessed Duress; if a certain historical version pair (vlib1, vlib2)
does not enable Duress — called safe pair, the particular app
still may have witnessed Duress (if the app does not use the
specific library version), but with lower likelihood. To better
characterize the likelihood of an app appd p to have witnessed
Duress, denoted as P(appd p), we consider P(appd p) to be
the ratio of non-safe pairs among all historical version pairs
of the app. Based on this model and our dataset, we use a
violinplot-based approach to present the result: 76.5% apps
have a P(appd p) value of at least 85.0% (Figure 6), and the
average P(appd p) of all apps in Dduress_potential is 80.8%. Fur-
ther, we report that, from a total of 1,337 historical library
versions we collected, there are 18,143 unique historical ver-
sion pairs for all apps in Dduress_potential , and 76.9% of the
historical version pairs feature Duress conflicts.

We sampled ten apps with the smallest P(appd p), and
found that they use some libraries, e.g., io.hippochat:hippo
and com.hipay.fullservice:hipayfullservice, of which only few
recent library versions contain sensitive resources because
of new feature introduction. For example, io.hippochat:hippo,

a marketing automation platform, introduced a feature
in version 3.0.5 that allows its users to checkout via
com.razorpay:checkout library. Thus, only version 3.0.5
and after contain sensitive manifest resources that modify
com.razorpay:checkout-related components, i.e., changing
android:exported of RzpTokenReceiver and CheckoutActivity.
We want to note that the likelihood of an app being affected
can be further increased by adopting new library detection
methods that can distinguish between library versions (which
we leave as a future implementation).

The majority of the apps are reported since the manifest
files of their libraries can modify each other, either via
merging into insecure attributes (168 apps), or overriding
existing attributes (137 apps). In particular, we found that
libraries frequently compete with other libraries in the
backup-related attributes, such as android:allowBackup
and android:fullBackupContent. As we will discuss in
Section 5.4, even popular libraries like Vungle and Appsflyer
are competing with each other when specifying the attributes,
resulting in weakened backup rules that unexpectedly expose
library data. In addition, aligned with our observation of
integration risks, the duplicate file provider paths files and
network security config are also found to affect 76 and 45
apps, respectively. We find fewer or no apps affected by other
types of duplicate resources.

5.2 Causal Analysis
We are curious why duplicate sensitive resources are so com-
mon across third-party libraries. Therefore, for each resource
type, we sampled 20 pairs of libraries (we collect all library
pairs if there are fewer than 20), and analyzed the causes of
duplicate resources. In total, we analyzed 229 library pairs.
Reliance on a common library. We noticed that a large por-
tion (34.5%) of the library pairs depend on a common library.
However, the common library is often not self-contained, and
it requires its consumer (i.e., app or library that depends on
it) to pre-configure some settings. An example is the Google
Service library [22]. A consumer that uses this library has to
specify a few keys, including firebase_database_url and
google_api_key in its values.xml file. There won’t be an
issue if the consumer is an app, since the app’s values.xml
file is integral because app modules have the highest priority
in ARC. However, an issue may arise when the consumer is
a library: if two libraries that consume the Google Service
library are integrated into the same app, the keys in the
libraries’ values.xml file will become duplicate resources,
which would trigger deduplication and lead to potential
attacks to one library, e.g., quota theft or authorized access
to Google services. Our analysis indicates that the issue is
not a corner case since third-party libraries frequently rely
on common libraries to provide richer functions.
Generic resource names that are prone to name collisions.
The developers of 27.1% library pairs choose to use simple
and generic names (e.g., password and server_url) for

sensitive resources. These names, when used by multiple
libraries, can introduce Duress risks. An example is the
hippoagentsdk library which leverages a confirmation string
to ask for explicit consent from users, i.e., “I agree to the
terms of use and privacy policies on [website]”. Our study
shows that at least 188 other libraries have a confirmation
string that is irrelevant to user consent. Therefore, integrating
these libraries together with hippoagentsdk library will
potentially override the string that asks for user consent, and
lead to unattended compliance risks to library developers.
Resource names from the sample code of official docu-
ments. 25.8% library pairs have duplicate resources since
they all follow the resource names in the sample code of
official documents. For a long time, developers have built
the notion that sample code from official documents is
safe to use. Unfortunately, this practice may unexpectedly
cause Duress risks to third-party libraries. Take the network
security config [53] feature as an example. With this
feature, developers can specify network policies, such
as whether HTTP is allowed, the set of trusted CAs, and
certificate pinning, in a declarative XML resource file. The
sample code in the official documents [49] names this file
/res/xml/network_security_config.xml. Our study
shows that almost all of the libraries that use this feature
(90.3%, 168/186) adopt the same file name. Thus, if two of
the libraries are integrated in the same app, it’s almost certain
that their network security policy would override each other.
Library templates and library outsourcing. The remain-
ing duplicate resources are caused by library templates,
e.g., open-source projects, or public app/library builder
services. Examples are com.jbangit.app:unimini and
com.rsdx.tojoy.shop:sdk libraries. Our analysis shows that
they are both created by a builder service dcloud.io [21]. Not
surprisingly, the two libraries contain a configuration file
with the same name assets/data/dcloud_control.xml,
which stores the unique api key (appid) provided by dcloud.io.
As noted earlier, in cases that the two libraries are integrated
in the same app, there will be a Duress risk that causes the
deduplication and misuse of the api key.

A special case for library templates is associated with
library outsourcing. Using eu.genome.android:sdk-payment
and com.maxpay.android:sdk-payment as examples. The
two libraries are provided as mobile SDKs for online
payment platforms – Genome and Maxpay – that serve
Lithuania and Malta customers, respectively. The platforms
don’t seem to be connected to each other according to
online information (e.g., official websites). However, our
analysis indicates that their mobile SDKs are actually
built by the same party since they share almost identical
code bases, except for the replacement of several resource
values, e.g., Genome specifies its @string/prod_url as
https://gateway.genome.eu/api/ while Maxpay uses
https://gateway.maxpay.com/api/. We suspect that the
reason is that the two platforms outsourced the development

to the same third party, who reused the same template during
development. Similar to using open-source and app builder
templates, library outsourcing is dangerous as well since
the library owners may not be aware of the presence of the
template, not to mention the integration risks.

5.3 Responsible Disclosure
As we discussed in Section 3, the Duress risks are rooted
in the design of ARC’s mechanism of duplicate resource
mediation. Therefore, we reported all the discovered risks,
including a detailed description of attack cases (with
anonymized library names) to Google – the owner of ARC.
Google responded to us quickly. On the one hand, they
emphasized that it is the developers’ responsibility to ensure
the libraries they use are secure, i.e., libraries would not
introduce malicious resources to exploit ARC. On the other
hand, they raised a feature request in Android Studio to allow
app developers to detect and resolve conflicts. At the time
of writing, we did not get further updates about this feature.
We are also in the process of reporting our findings to the
developers of the affected apps. For more updated information
about the responses, please refer to our website [24].

5.4 Case Studies

Taking over cloud backends with duplicate credentials.
Our study shows that at least 217 libraries hard-code their
credentials in the resources. Exposing such credentials could
lead to severe consequences, e.g., cloud backend takeover.

MistPlay [19] is a leading play-game-to-earn platform
(ranked #3 in the AppsFlyer growth index for Japan and
Korea) that serves 200+ mobile games and over 1M users.
Gaming apps may use its mobile library, LoyaltyPlay, to
integrate the play-game-to-earn feature into the apps so
as to increase user retention. We found that LoyaltyPlay
leverages Amazon Kinesis Data Firehose and S3 to collect
and process the gamers’ streaming data, such as user id,
in-game search query, and click events, etc. For this purpose,
the LoyaltyPlay library hard-coded the AWS credentials,
including the Cognito Identity Pool ID, in a resource file
/res/raw/loyaltyplay_awsconfiguration.json. An
attacker may use a malicious library to plug in his own
credentials by overriding the resource file (Risk-1 Resource-
Overriding). This would automatically “redirect” the library
to an AWS account owned by the attacker, leading to the com-
plete takeover of the cloud backend. Interestingly, we found
that this attack is technically feasible because it requires no
code modifications in the LoyaltyPlay library, nor additional
configurations in the cloud backends (except for activating
the Kinesis service in the attacker’s account). Furthermore,
the attack is also stealthy and transparent to app developers
and app users as it happens entirely in the background, e.g.,
credentials are overridden automatically in app build process,
and the backend takeover doesn’t introduce extra behaviors
at runtime. More details about the attack are available at [24].

Technical support scams. As noted in Section 5.1, over
a thousand libraries store technical support contacts in the
resources. These contacts, if contaminated in Duress attacks
by fake contacts, would enable scammers to launch practical
attacks such as targeted phishing attacks.

Dolyame.ru is the first digital buy-now-pay-later ser-
vice available in Russia. This service provided a mobile
library called ru.tinkoff.dolyame:sdk for the sellers to
integrate it into their apps. We noticed that the library
embedded a supportChat string (that points to WhatsApp
“https://wa.me/74997000600”) in its resource file
/res/raw/config.json. When there is a payment issue,
the app users can follow the supportChat to connect with
technical support via WhatsApp. In case that an attacker over-
rides the supportContact with a fake contact, he can pretend
to be the legitimate support, and perform phishing attacks
to exfiltrate customer sensitive information such as customer
name, address, purchase history, etc. Even worse, the attacker
may encourage the customers to visit malicious websites
and download an unwanted app to their devices. We want to
highlight that, compared to traditional smishing or sms spams,
such an attack might be more convincing as it originates from
a specific seller’s app and targets the users of the app.
Opening doors for man-in-the-middle (MITM) attack. To
secure network connections of apps, Google introduced the
network security config feature [53] in Android 7.0. With
this feature, developers can specify network security policies
in a declarative XML configuration file, e.g., /res/xml/n
etwork_security_config.xml, without actual coding. A
malicious library can compromise the other libraries’ policies
by overriding the configuration file using Duress attacks.

HitPay is an online payment gateway for small and medium-
sized businesses in Singapore. The mobile library of HitPay,
i.e., com.hit-pay.terminalsdk, relies on a network security con-
figuration for protecting the network accesses from the library.
As shown in Figure 7, an important measure is to enable cer-
tificate pinning for its backend server api.hit-pay.com
for the purpose of thwarting man-in-the-middle (MITM) at-
tacks. Our study shows that a malicious library is capable of
arbitrarily modifying the configurations so as to disable the
certificate pinning and open a door for MITM attacks, e.g., by
removing the pin set, adding a pin that contains the digest of
an attacker’s public key, or marking the pin set as expired, etc.
Contaminating Android backup rules. Since Android 6.0,
app users can automatically backup their apps’ data to Google
Drive using the Auto Backup feature [48]. By default, this
feature would upload virtually all app data, including shared
preference, database, and other files in internal and external
storage. At the same time, Android allows developers to
customize the backup rules in an XML file and specify which
files can (and cannot) be uploaded to Google Drive.

As a common practice, library developers often choose
not to upload highly-confidential files so as to reduce data
exposure risks. An example is Appsflyer - a popular mobile

1 <network-security-config>
2 <domain-config>
3 <domain includeSubdomains

="true">api.hit-pay.com</domain>
4 <pin-set expiration="2031-01-01">
5 <pin digest="SHA-256">u4Ip5dqwv*</pin>
6 </pin-set>
7 </domain-config>
8 </network-security-config>

Figure 7: Network security configuration of HitPay

marketing analytics platform [20]. In its backup rule file (i.e.,
/res/xml/appsflyer_backup_rules.xml), Appsflyer ex-
plicitly asked Android to exclude the backup of the shared
preference appsflyer-data.xml, which stores the app in-
stallation data, cached device ID and appsflyer ID, in-app
event statistics, etc. As we demonstrated in Section 3.2, an at-
tacker may disable the custom rule by replacing the entire rule
file using a malicious library (Risk-1: Resource-Overriding),
and thus cause unexpected exposure to Appsflyer internal data.

Besides the above hypothetical attack, we found that con-
tention for backup rules has happened and been discussed in
the wild. Specifically, in order to use custom backup rules,
an android:fullBackupContent attribute, together with a
rule file path, needs to be added to the manifest file. In cases
where multiple libraries use different backup rule files, the
app developer has to specify which rule file to choose using
manifest node markers (see Risk-2 Resource-Overriding in
Section 3.2). In our study, we noticed that Vungle library – a
mobile advertising and monetization platform – has a competi-
tion with Appsflyer. Interestingly, instead of telling developers
to merge the two rule files, both Vungle and Appsflyer are in-
structing app developers to use their own backup rules, while
ignoring the rules of the other platform [30, 95]. We observed
that such a contention has happened to at least 68 apps in Da.

5.5 Potential Mitigation
Duress risks are caused by the design of ARC. Therefore,
a long-term mitigation may require significant effort from
Google, e.g., to tune the duplicate resource mediation
mechanisms, or provide app developers with capabilities
to resolve duplicates by themselves. Before a long-term
solution is found, it is important to have an effective interim
mitigation in place.
Design choices. An intuitive solution for resolving duplicates
is to confine the libraries in isolated domains. Such library
isolation approach has been extensively discussed in prior
studies [55, 59, 64, 74, 76, 81, 86], which, however, only
focused on isolating untrusted library code rather than
resources or are too heavy-weight to apply to all libraries.
In our mitigation, we adopt a similar isolation approach
but applies it to library resources at compile time. Most
importantly, we make design decisions to reduce the overhead
and integration frictions of the mitigation.
• In-app resource isolation. Prior studies, such as Com-
pARTist [59] and SDK Runtime [55], have explored how

to separate third-party libraries into multiple processes at
runtime. Unfortunately, these approaches are difficult to apply
to all libraries due to the high performance overhead and
the complexity of handling strongly-coupled libraries [55].
Therefore, instead of completely separating the libraries
with multiple processes, we provide lightweight isolation
for duplicate resources by placing them into different
namespaces while keeping libraries running in the same
process as the app and other libraries.
• Compile-time resource rewriting. To support resource
namespaces, we need to rewrite the libraries before compiling
them into an app. Our choice is to implement this procedure
at app compile time, right ahead of ARC. This choice results
very low integration frictions compared to prior studies that
require OS modifications [74, 81]: app developers can freely
enable and disable the mitigation since they are in charge of
app compile process.
Implementations. Recall that ARC relies on several Gradle
tasks (e.g., MergeResources) to mediate duplicate resources.
The input to the tasks is the resources from third-party
libraries, while the output is the compiled resources (i.e.,
deduplicated and merged resources). We implemented
a Gradle plugin using Groovy to preprocess the library
resources that are fed into the ARC tasks.

Take the MergeResources task for example. We add
our plugin to the doFirst method of this task to ensure it
runs right ahead of the task. In the plugin, we leverage the
MergeResources.getInputs API to extract the input to the
task, i.e., the list of libraries and their resource directories
(.gradle/caches/.../[library]/res/). We then scan
these resource directories to identify resource duplicates.
After collecting the duplicate resources, we run our semantic-
based method (Section 4.2) to determine whether these dupli-
cate resources are sensitive or not. We add a unique prefix, i.e.,
the libraries’ [group id]_[artifact id], to the names
of sensitive duplicate resources, so that the resources are
virtually placed in isolated namespaces. At the same time, we
scan the code of the library and its dependencies (.gradle/
caches/.../[library]/jars/classes.jar), and change
the resource references to the modified resource names.
Specifically, we use dex2jar [13] and baksmali [18] to dexify
and decompile the bytecode into smali code. Then, we search
through the smali code to find the references to the duplicate
resources (e.g., in the form of R.id.[resource_name]),
and add the same prefix to the resource names.

The way we isolate manifest components is slightly
different. We scan all the library manifest files (.gradle/ca
ches/.../[library]/AndroidManifest.xml) and build
an ownership map between the manifest components and their
hosting libraries, i.e., libraries that implement the components
in the code. Then, we remove the security-sensitive manifest
attributes when a library’s manifest is found to modify the
components that the library does not own. With this method,
we can effectively prevent an unauthorized library from mod-

ifying the other libraries’ manifest. Optionally, we also allow
app developers to define an allow-list in the build script to
enable cross-library modifications from trustworthy libraries.

Note that we released our plugin to the Gradle Plugin Por-
tal, and app developers can freely integrate it into the app build
process by adding the plugin’s id in the build.gradle [56].
Further, since the plugin would not change the way library re-
sources are accessed, we don’t expect performance penalties
at runtime. However, it will inevitably cause delays to the app
build process, e.g., for parsing resources, and reversing the
library code (when duplicate resources exist). Our evaluation
shows that this overhead is acceptable, with an average delay
of ~1.46 seconds for compiling the 100 open-source projects
(used in Section 3.1) on a laptop running Ubuntu 20.04 with
Intel Core i7-9750H CPU@2.60GHz.

6 Discussion
Our methodology relies on resource clustering and expert
knowledge to determine the types of sensitive resources,
which works well for common library resources (e.g., re-
sources in Table 2), but can not scale to highly customized
library resources. We are exploring approaches that can auto-
matically tell sensitivity of library resources without expert in-
put. Also, we identified integration risks by analyzing the most
recent version of the libraries, and detected occurrences of
these libraries in real apps. We were not able to conduct a full
forensics analysis of the apps, and thus reported them as poten-
tial occurrences of Duress. While the apps may use historical
library versions that do not cause problems, we want to high-
light that an update of the apps’ libraries to the most recent
version still has a high chance of enabling Duress. The mit-
igation we built on top of compile-time resource namespace
(Section 5.5) is limited in many cases, e.g., resource names
are encrypted by library code, resource references are made
from dynamic code or code of other libraries, etc. We believe
a long-term mitigation may require collaborative efforts from
different stakeholders, e.g., native support for library resource
isolation from Android, and tighter security review of sensi-
tive resources from the repository hosting services. In addi-
tion, although we focused on Android and its ARC, evidences
show that Duress can happen to other ecosystems and build
tools (e.g., Maven), which we leave for future investigation.

Recently, Android proposed a new feature – SDK
Runtime [55] – for the purpose of reducing data exposure
risks posed by third-party SDKs. Essentially, third-party
developers can voluntarily publish their SDKs to the Android
app store, and then the SDK can run in a modified and isolated
environment on user devices. This feature could theoretically
reduce Duress risks. However, as noted by Google [55],
the feature only supports advertising SDKs because of its
high overhead in isolating all SDKs, and the complexity
in handling SDKs that are strongly coupled with the apps.
Therefore, we believe the introduction of SDK Runtime
would not significantly change the profile of Duress risks.

7 Related Work

Malicious activities of third-party libraries. Previous stud-
ies have investigated different types of malicious activities
in third-party libraries, such as harvesting sensitive user
data [37, 43, 70, 83, 85, 96, 109], ad fraud [42, 61, 87], and
tracking users without consent [77, 92], etc. Among these
studies, most close to our work is XFinder [96], which investi-
gated how malicious libraries can harvest private data of other
libraries using malicious library code. Unlike XFinder, our
work sheds light on a different and new attack opportunity that
is provided by the design of the Android resource compiler,
which allows malicious libraries to launch attacks only using
malicious library resources. Further, besides private data leak-
age, our study leads to the discovery of a richer set of attacks
that can mislead victim libraries and end users (e.g., backend
server takeover, technical support scams), and lowering down
the security protection of victim libraries (e.g., by compro-
mising network security policies and manifest attributes).

Mitigating malicious third-party libraries. A natu-
ral mitigation to malicious third-party libraries is to
confine them in isolated and unprivileged domains,
which has been well discussed in the past few years on An-
droid [55, 59, 64, 74, 76, 81, 86, 90]. Unfortunately, most pre-
vious studies [64, 76, 81, 86, 90] are not applicable to Duress
risks because they apply isolation to released apps whose
resources have already been processed by ARC. Some studies
propose to isolate ads library in isolated processes [55, 59] or
integrate them into the Android platform [74]. These studies
are potentially useful to mitigate Duress attacks, but are prac-
tically limited to apply to all third-party libraries (as we dis-
cussed in Section 6). Therefore, we propose a lightweight and
compile-time mitigation to reduce Duress risks (Section 5.5).

Resource squatting attacks. Essentially, Duress attack is an
instance of resource squatting attack, in which a malicious
party creates the same or similar resource before a victim
party does so as to achieve malicious purposes. Examples
of such attacks include a privilege escalation attack that
fools the Android OS update process with pre-registered
privileges [101], an attack that steals other iOS app’s private
data by creating duplicate keychain attributes and URL
schemes, etc. [100], and an attack that routes end users to
a malicious skill by creating confusing skills in the Alexa
skills store [63], etc. Compared to these attacks, our study
reveals a new type of vulnerability that is rooted in the
design of Android’s duplicate resource mediation process,
which enables malicious libraries to stealthily and effectively
compromise the other libraries in the app supply chain.

8 Conclusion
In this study, we discover a new attack surface that is caused
by the design of the Android duplicate resource mediation
process. With this attack surface, an attacker can contaminate
the app supply chain with crafted malicious libraries in order

to perform highly stealthy, and cross-library attacks, such as
misleading the victim library and its users to expose sensitive
data, lowering down the victim library’s security protection,
etc. To systematically evaluate the impact of the new threat,
we design an automatic methodology to identify the attack
opportunities, integration risks, and apps affected by the risks.
Our measurement results brought to light the pervasiveness
of the risks in the app’s supply chain. In addition, we discuss
a lightweight and compile-time mitigation to help reduce the
security risks by isolating library resources.

Acknowledgments
We thank our shepherd and the anonymous reviewers for
their valuable comments and suggestions. Luyi Xing was
supported in part by Indiana University’s IAS Collaborative
Research Award. Yan Jia is supported in part by National
Natural Science Foundation of China (No. 62102198) and
China Postdoctoral Science Foundation (No. 2021M691673).
This research was supported in part by Lilly Endowment,
Inc., through its support for the Indiana University Pervasive
Technology Institute. Any opinions, findings, and conclusions
in this paper are those of the authors and do not necessarily
reflect the views of our sponsors.

References
[1] The android app bundle format. h t t p s :

//developer.android.com/guide/app-bun
dle/app-bundle-format.

[2] Android gradle plugin release notes. https:
//developer.android.com/studio/releases/gr
adle-plugin.

[3] App manifest overview. https://developer.andr
oid.com/guide/topics/manifest/manifest-i
ntro.

[4] App resources overview. https://developer.an
droid.com/guide/topics/resources/providing
-resources.

[5] Application fundamentals. https://developer.an
droid.com/guide/components/fundamentals.

[6] Create an android library. https://developer.an
droid.com/studio/projects/android-library.

[7] Cve-2016-10135. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2016-10135.

[8] Cve-2016-2497. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2016-2497.

[9] Cve-2017-16835. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2017-16835.

[10] Cve-2021-43388. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2021-43388.

[11] Cve-2021-43849. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2021-43849.

[12] Cve-2022-20475. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2022-20475.

[13] dex2jar. https://github.com/pxb1988/dex2jar.
[14] Fileprovider. https://developer.android.com/

reference/androidx/core/content/FileProvid
er.

[15] Improperly exposed directories to fileprovider.
https://developer.android.com/topic/securi
ty/risks/file-providers.

[16] New android trojan leads users to scam sites via
notifications. https://www.bleepingcomputer.c
om/news/security/new-android-trojan-leads
-users-to-scam-sites-via-notifications/.

[17] Sensitive information disclosure in android. https:
//knowledge-base.secureflag.com/vulnerabi
lities/sensitive_information_exposure/sens
itive_information_disclosure_android.html.

[18] smali/baksmali. https://github.com/JesusFrek
e/smali.

[19] Mistplay. https://www.mistplay.com/about-us,
2021.

[20] Appsflyer. https://www.appsflyer.com/, 2022.
[21] Dcloud. https://www.dcloud.io, 2022.
[22] The google services gradle plugin. h t t p s :

//developers.google.com/android/guides/goo
gle-services-plugin, 2022.

[23] Maven central repository). https://repo1.maven.
org/maven2/, 2022.

[24] Supplemental materials. https://sites.google.c
om/view/union-under-duress, 2022.

[25] 89z. Google play crawler. https://github.com/8
9z/googleplay, 2022.

[26] Yousra Aafer, Xiao Zhang, and Wenliang Du. Har-
vesting inconsistent security configurations in custom
android {ROMs} via differential analysis. In USENIX
Security, pages 1153–1168, 2016.

[27] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L Mazurek, and Christian Stransky.
You get where you’re looking for: The impact of
information sources on code security. In IEEE S&P,
pages 289–305. IEEE, 2016.

[28] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. Androzoo: Collecting millions
of android apps for the research community. In MSR,
pages 468–471. IEEE, 2016.

[29] Benjamin Andow, Samin Yaseer Mahmud, Wenyu
Wang, Justin Whitaker, William Enck, Bradley Reaves,
Kapil Singh, and Tao Xie. Policylint: Investigating
internal privacy policy contradictions on google play.
In USENIX Security, pages 585–602, 2019.

https://developer.android.com/guide/app-bundle/app-bundle-format
https://developer.android.com/guide/app-bundle/app-bundle-format
https://developer.android.com/guide/app-bundle/app-bundle-format
https://developer.android.com/studio/releases/gradle-plugin
https://developer.android.com/studio/releases/gradle-plugin
https://developer.android.com/studio/releases/gradle-plugin
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10135
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10135
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2497
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2497
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43388
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43388
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43849
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43849
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20475
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20475
https://github.com/pxb1988/dex2jar
https://developer.android.com/reference/androidx/core/content/FileProvider
https://developer.android.com/reference/androidx/core/content/FileProvider
https://developer.android.com/reference/androidx/core/content/FileProvider
https://developer.android.com/topic/security/risks/file-providers
https://developer.android.com/topic/security/risks/file-providers
https://www.bleepingcomputer.com/news/security/new-android-trojan-leads-users-to-scam-sites-via-notifications/
https://www.bleepingcomputer.com/news/security/new-android-trojan-leads-users-to-scam-sites-via-notifications/
https://www.bleepingcomputer.com/news/security/new-android-trojan-leads-users-to-scam-sites-via-notifications/
https://knowledge-base.secureflag.com/vulnerabilities/sensitive_information_exposure/sensitive_information_disclosure_android.html
https://knowledge-base.secureflag.com/vulnerabilities/sensitive_information_exposure/sensitive_information_disclosure_android.html
https://knowledge-base.secureflag.com/vulnerabilities/sensitive_information_exposure/sensitive_information_disclosure_android.html
https://knowledge-base.secureflag.com/vulnerabilities/sensitive_information_exposure/sensitive_information_disclosure_android.html
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://www.mistplay.com/about-us
https://www.appsflyer.com/
https://www.dcloud.io
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://repo1.maven.org/maven2/
https://repo1.maven.org/maven2/
https://sites.google.com/view/union-under-duress
https://sites.google.com/view/union-under-duress
https://github.com/89z/googleplay
https://github.com/89z/googleplay

[30] Appsflyer. Appsflyer 6.1.3 manifest conflicts with
vungle network). https://github.com/AppsFlyer
SDK/appsflyer-unity-plugin/issues/54, 2021.

[31] Michael Backes, Sven Bugiel, and Erik Derr. Reliable
third-party library detection in android and its security
applications. In CCS, pages 356–367, 2016.

[32] Guangdong Bai, Jun Sun, Jianliang Wu, Quanqi Ye,
Li Li, Jin Song Dong, and Shanqing Guo. All your
sessions are belong to us: Investigating authenticator
leakage through backup channels on android. In
ICECCS, pages 60–69. IEEE, 2015.

[33] Wenying Bao, Wenbin Yao, Ming Zong, and Dongbin
Wang. Cross-site scripting attacks on android hybrid
applications. In CSP, pages 56–61, 2017.

[34] Alex Birsan. Dependency confusion: How i hacked
into apple, microsoft and dozens of other companies.
https://medium.com/@alex.birsan/dependency
-confusion-4a5d60fec610.

[35] California. California consumer privacy rights act,
2020 (proposition 24). https://vig.cdn.sos.ca.g
ov/2020/general/pdf/topl-prop24.pdf, 2020.

[36] Patrick PF Chan, Lucas CK Hui, and Siu-Ming Yiu.
Droidchecker: analyzing android applications for
capability leak. In WiSec, pages 125–136, 2012.

[37] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang,
Yeonjoon Lee, XiaoFeng Wang, Bin Ma, Aohui Wang,
Yingjun Zhang, and Wei Zou. Following devil’s
footprints: Cross-platform analysis of potentially
harmful libraries on android and ios. In IEEE S&P,
pages 357–376. IEEE, 2016.

[38] Beumjin Cho, Sangho Lee, Meng Xu, Sangwoo Ji, Tae-
soo Kim, and Jong Kim. Prevention of cross-update pri-
vacy leaks on android. ComSIS, 15(1):111–137, 2018.

[39] Colorado. Colorado privacy act, 2021 s.b. 190.
https://leg.colorado.gov/sites/default/fil
es/2021a_190_signed.pdf, 2021.

[40] Connecticut. Substitute senate bill no. 6.
https://www.cga.ct.gov/2022/amd/S/pd
f/2022SB-00006-R00SA-AMD.pdf, 2022.

[41] The MITRE Corporation. Common vulnerabilities
and exposures (cve). https://cve.mitre.org.

[42] Jonathan Crussell, Ryan Stevens, and Hao Chen. Mad-
fraud: Investigating ad fraud in android applications.
In ACM MobiSys, pages 123–134, 2014.

[43] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston
Zhang, and Carl A Gunter. Free for all! assessing user
data exposure to advertising libraries on android. In
NDSS, 2016.

[44] Aurore Fass, Michael Backes, and Ben Stock. Hi-
denoseek: Camouflaging malicious javascript in
benign asts. In CCS, pages 1899–1913, 2019.

[45] Dan Geer, Bentz Tozer, and John Speed Meyers. For
good measure: Counting broken links: A quant’s view
of software supply chain security. In USENIX; Login:,
Vol. 45, no. 4. 2020.

[46] Shafi Goldwasser, Michael P Kim, Vinod Vaikun-
tanathan, and Or Zamir. Planting undetectable
backdoors in machine learning models. In FOCS,
pages 931–942. IEEE, 2022.

[47] Google. Android developer documentation: App
manifest. https://developer.android.com/guid
e/topics/manifest/manifest-intro, 2022.

[48] Google. Back up user data with auto backup.
https://developer.android.com/guide/topics
/data/autobackup, 2022.

[49] Google. Configure a custom ca. h t t p s :
//developer.android.com/training/art
icles/security-config#ConfigCustom, 2022.

[50] Google. Google play. https://play.google.com/,
2022.

[51] Google. Google play user data policy.
https://support.google.com/googlepla
y/android-developer/answer/10144311, 2022.

[52] Google. Google scholar. https://scholar.goog
le.com/, 2022.

[53] Google. Network security configuration.
https://developer.android.com/traini
ng/articles/security-config, 2022.

[54] Google. Safer component exporting. https:
//developer.android.com/about/versions/12/
behavior-changes-12#exported, 2022.

[55] Google. Sdk runtime. https://developer.androi
d.com/design-for-safety/privacy-sandbox/s
dk-runtime, 2022.

[56] Gradle. Using gradle plugins. https://docs.gradl
e.org/current/userguide/plugins.html#sec:
plugins_block, 2022.

[57] Gradle. Viewing and debugging dependencies.
https://docs.gradle.org/current/userguide/
viewing_debugging_dependencies.html, 2022.

[58] Behnaz Hassanshahi and Roland HC Yap. Android
database attacks revisited. In ASIACCS, pages
625–639, 2017.

[59] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael
Backes. The art of app compartmentalization:
Compiler-based library privilege separation on stock
android. In CCS, pages 1037–1049, 2017.

[60] Ratinder Kaur, Yan Li, Junaid Iqbal, Hugo Gonzalez,
and Natalia Stakhanova. A security assessment of
hce-nfc enabled e-wallet banking android apps. In
COMPSAC, volume 2, pages 492–497. IEEE, 2018.

https://github.com/AppsFlyerSDK/appsflyer-unity-plugin/issues/54
https://github.com/AppsFlyerSDK/appsflyer-unity-plugin/issues/54
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://vig.cdn.sos.ca.gov/2020/general/pdf/topl-prop24.pdf
https://vig.cdn.sos.ca.gov/2020/general/pdf/topl-prop24.pdf
https://leg.colorado.gov/sites/default/files/2021a_190_signed.pdf
https://leg.colorado.gov/sites/default/files/2021a_190_signed.pdf
https://www.cga.ct.gov/2022/amd/S/pdf/2022SB-00006-R00SA-AMD.pdf
https://www.cga.ct.gov/2022/amd/S/pdf/2022SB-00006-R00SA-AMD.pdf
https://cve.mitre.org
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/data/autobackup
https://developer.android.com/guide/topics/data/autobackup
https://developer.android.com/training/articles/security-config#ConfigCustom
https://developer.android.com/training/articles/security-config#ConfigCustom
https://developer.android.com/training/articles/security-config#ConfigCustom
https://play.google.com/
https://support.google.com/googleplay/android-developer/answer/10144311
https://support.google.com/googleplay/android-developer/answer/10144311
https://scholar.google.com/
https://scholar.google.com/
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://developer.android.com/about/versions/12/behavior-changes-12#exported
https://developer.android.com/about/versions/12/behavior-changes-12#exported
https://developer.android.com/about/versions/12/behavior-changes-12#exported
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime
https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime
https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block
https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block
https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block
https://docs.gradle.org/current/userguide/viewing_debugging_dependencies.html
https://docs.gradle.org/current/userguide/viewing_debugging_dependencies.html

[61] Joongyum Kim, Junghwan Park, and Sooel Son. The
abuser inside apps: Finding the culprit committing
mobile ad fraud. In NDSS, 2021.

[62] Vasileios Kouliaridis, Georgios Kambourakis, Efs-
tratios Chatzoglou, Dimitrios Geneiatakis, and Hua
Wang. Dissecting contact tracing apps in the android
platform. Plos one, 16(5):e0251867, 2021.

[63] Deepak Kumar, Riccardo Paccagnella, Paul Murley,
Eric Hennenfent, Joshua Mason, Adam Bates, and
Michael Bailey. Skill squatting attacks on amazon
alexa. In USENIX Security, pages 33–47, 2018.

[64] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan.
Efficient privilege de-escalation for ad libraries in
mobile apps. In ACM MobiSys, pages 89–103, 2015.

[65] Siqi Ma, Hehao Li, Wenbo Yang, Juanru Li, Surya
Nepal, and Elisa Bertino. Certified copy? understand-
ing security risks of wi-fi hotspot based android data
clone services. In ACSAC, pages 320–331, 2020.

[66] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen.
Libradar: fast and accurate detection of third-party li-
braries in android apps. In ICSE, pages 653–656, 2016.

[67] Najmeh Miramirkhani, Oleksii Starov, and Nick
Nikiforakis. Dial one for scam: A large-scale analysis
of technical support scams. In NDSS, 2017.

[68] MoEngage. Exclude moengage storage
file from auto-backup 11.x.x. h t t p s :
//developers.moengage.com/hc/en-us/ar
ticles/4479487318804-Exclude-MoEngage-Sto
rage-File-from-Auto-Backup-11-x-x.

[69] Daniel Müllner. fastcluster: Fast hierarchical,
agglomerative clustering routines for r and python,
journal of statistical software 53 (2013), no. 9, 1–18,.
http://danifold.net/fastcluster.html, 2013.

[70] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan
Zhang, Donglai Zhu, and Min Yang. Finding clues for
your secrets: Semantics-driven, learning-based privacy
discovery in mobile apps. In NDSS, 2018.

[71] Marten Oltrogge, Nicolas Huaman, Sabrina Amft,
Yasemin Acar, Michael Backes, and Sascha Fahl.
Why eve and mallory still love android: Revisiting
{TLS}({In) Security} in android applications. In
USENIX Security, pages 4347–4364, 2021.

[72] Stack Overflow. Fileprovider - internal stor-
age - failed to find configured root that contains.
https://stackoverflow.com/questions/488477
87/fileprovider-internal-storage-failed-t
o-find-configured-root-that-contains.

[73] Alexander Palm and Benjamin Gafvelin. Ethical hack-
ing of android auto in the context of road safety, 2021.

[74] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez,
and David Wagner. Addroid: Privilege separation for

applications and advertisers in android. In CCS, pages
71–72, 2012.

[75] Andrea Possemato and Yanick Fratantonio. Towards
{HTTPS} everywhere on android: We are not there
yet. In USENIX Security, pages 343–360, 2020.

[76] Jun Qiu, Xuewu Yang, Huamao Wu, Yajin Zhou,
Jinku Li, and Jianfeng Ma. Libcapsule: Complete
confinement of third-party libraries in android
applications. TDSC, 2021.

[77] Abbas Razaghpanah, Rishab Nithyanand, Narseo
Vallina-Rodriguez, Srikanth Sundaresan, Mark Allman,
Christian Kreibich, Phillipa Gill, et al. Apps, trackers,
privacy, and regulators: A global study of the mobile
tracking ecosystem. In NDSS, 2018.

[78] Razorpay. Razorpay online payment solution.
https://razorpay.com/, 2022.

[79] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei,
and Peng Liu. Towards discovering and understanding
task hijacking in android. In USENIX Security, pages
945–959, 2015.

[80] Ahmed Salem, Rui Wen, Michael Backes, Shiqing
Ma, and Yang Zhang. Dynamic backdoor attacks
against machine learning models. In EuroS&P, pages
703–718. IEEE, 2022.

[81] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik
Shin, and Taesoo Kim. Flexdroid: Enforcing in-app
privilege separation in android. In NDSS, 2016.

[82] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini,
James Hester, Ram Krishnan, Jaspreet Bhatia, Travis D
Breaux, and Jianwei Niu. Toward a framework
for detecting privacy policy violations in android
application code. In ICSE, pages 25–36, 2016.

[83] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov.
What mobile ads know about mobile users. In NDSS.
Citeseer, 2016.

[84] Bharat Srinivasan, Athanasios Kountouras, Najmeh
Miramirkhani, Monjur Alam, Nick Nikiforakis, Manos
Antonakakis, and Mustaque Ahamad. Exposing search
and advertisement abuse tactics and infrastructure of
technical support scammers. In Proceedings of the 2018
World Wide Web Conference, pages 319–328, 2018.

[85] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy
Erickson, and Hao Chen. Investigating user privacy
in android ad libraries. In MoST, volume 10, pages
195–197. Citeseer, 2012.

[86] Mengtao Sun and Gang Tan. Nativeguard: Protecting
android applications from third-party native libraries.
In WiSec, pages 165–176, 2014.

[87] Suibin Sun, Le Yu, Xiaokuan Zhang, Minhui Xue, Ren
Zhou, Haojin Zhu, Shuang Hao, and Xiaodong Lin. Un-
derstanding and detecting mobile ad fraud through the

https://developers.moengage.com/hc/en-us/articles/4479487318804-Exclude-MoEngage-Storage-File-from-Auto-Backup-11-x-x
https://developers.moengage.com/hc/en-us/articles/4479487318804-Exclude-MoEngage-Storage-File-from-Auto-Backup-11-x-x
https://developers.moengage.com/hc/en-us/articles/4479487318804-Exclude-MoEngage-Storage-File-from-Auto-Backup-11-x-x
https://developers.moengage.com/hc/en-us/articles/4479487318804-Exclude-MoEngage-Storage-File-from-Auto-Backup-11-x-x
http://danifold.net/fastcluster.html
https://stackoverflow.com/questions/48847787/fileprovider-internal-storage-failed-to-find-configured-root-that-contains
https://stackoverflow.com/questions/48847787/fileprovider-internal-storage-failed-to-find-configured-root-that-contains
https://stackoverflow.com/questions/48847787/fileprovider-internal-storage-failed-to-find-configured-root-that-contains
https://razorpay.com/

lens of invalid traffic. In CCS, pages 287–303, 2021.
[88] Di Tian. Detecting vulnerabilities of broadcast

receivers in Android applications. University of
Ontario Institute of Technology (Canada), 2016.

[89] Sentence Transformers. all-mpnet-base-v2.
https://huggingface.co/sentence-trans
formers/all-mpnet-base-v2, 2022.

[90] Eran Tromer and Roei Schuster. Droiddisintegrator:
Intra-application information flow control in android
apps. In ASIACCS, pages 401–412, 2016.

[91] Utah. Utah consumer privacy act, 2022 s.b. 227.
https://le.utah.gov/~2022/bills/static/SB0
227.html, 2021.

[92] Narseo Vallina-Rodriguez, Srikanth Sundaresan,
Abbas Razaghpanah, Rishab Nithyanand, Mark All-
man, Christian Kreibich, and Phillipa Gill. Tracking
the trackers: Towards understanding the mobile
advertising and tracking ecosystem. arXiv preprint
arXiv:1609.07190, 2016.

[93] Nicolas Viennot, Edward Garcia, and Jason Nieh. A
measurement study of google play. In SIGMETRICS,
pages 221–233, 2014.

[94] Virginia. Virginia consumer data protection act, 2021
h.b. 2307. https://lis.virginia.gov/cgi-bin
/legp604.exe?ses=212&typ=bil&val=Hb2307,
2021.

[95] Vungle. How to merge conflicts manually in
back_up_rules.xml between vungle and appsflyer
(android). https://support.vungle.com/hc/en
-us/articles/360054022852-How-to-merge-con
flicts-manually-in-back-up-rules-xml-bet
ween-Vungle-and-AppsFlyer-Android-, 2021.

[96] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan,
Luyi Xing, Xiaojing Liao, JinWei Dong, Nicolas
Serrano, Haoran Lu, XiaoFeng Wang, et al. Under-
standing malicious cross-library data harvesting on
android. In USENIX Security, pages 4133–4150, 2021.

[97] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky
Slavin, Travis D Breaux, and Jianwei Niu. Guileak:
Tracing privacy policy claims on user input data for
android applications. In ICSE, pages 37–47, 2018.

[98] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and
XiaoFeng Wang. Credit karma: Understanding
security implications of exposed cloud services
through automated capability inference. 2023.

[99] Yinhao Xiao, Guangdong Bai, Jian Mao, Zhenkai
Liang, and Wei Cheng. Privilege leakage and infor-
mation stealing through the android task mechanism.
In PAC, pages 152–163. IEEE, 2017.

[100] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFeng Wang,
Kai Chen, Xiaojing Liao, Shi-Min Hu, and Xinhui

Han. Cracking app isolation on apple: Unauthorized
cross-app resource access on mac os˜ x and ios. In
CCS, pages 31–43, 2015.

[101] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and
XiaoFeng Wang. Upgrading your android, elevating
my malware: Privilege escalation through mobile os
updating. In IEEE S&P, pages 393–408. IEEE, 2014.

[102] Jiwei Yan, Xi Deng, Ping Wang, Tianyong Wu, Jun
Yan, and Jian Zhang. Characterizing and identifying
misexposed activities in android applications. In ASE,
pages 691–701, 2018.

[103] Yuqing Yang, Mohamed Elsabagh, Chaoshun Zuo,
Ryan Johnson, Angelos Stavrou, and Zhiqiang Lin.
Detecting and measuring misconfigured manifest in
android apps. 2022.

[104] Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. Can
we trust the privacy policies of android apps? In DSN,
pages 538–549. IEEE, 2016.

[105] Xian Zhan, Lingling Fan, Sen Chen, Feng We,
Tianming Liu, Xiapu Luo, and Yang Liu. Atvhunter:
Reliable version detection of third-party libraries for
vulnerability identification in android applications. In
ICSE, pages 1695–1707. IEEE, 2021.

[106] Jiexin Zhang, Alastair R Beresford, and Stephan A
Kollmann. Libid: reliable identification of obfuscated
third-party android libraries. In ISSTA, pages 55–65,
2019.

[107] Xiao Zhang and Wenliang Du. Attacks on android
clipboard. In Detection of Intrusions and Malware,
and Vulnerability Assessment: 11th International
Conference, DIMVA 2014, Egham, UK, July 10-11,
2014. Proceedings 11, pages 72–91. Springer, 2014.

[108] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong
Huang, Zhemin Yang, Min Yang, and Hao Chen.
Detecting third-party libraries in android applications
with high precision and recall. In SANER, pages
141–152. IEEE, 2018.

[109] Zicheng Zhang, Wenrui Diao, Chengyu Hu, Shanqing
Guo, Chaoshun Zuo, and Li Li. An empirical study
of potentially malicious third-party libraries in android
apps. In WiSec, pages 144–154, 2020.

[110] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang.
Harvesting developer credentials in android apps. In
WiSec, pages 1–12, 2015.

[111] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang.
Why does your data leak? uncovering the data leakage
in cloud from mobile apps. In IEEE S&P, pages
1296–1310. IEEE, 2019.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://le.utah.gov/~2022/bills/static/SB0227.html
https://le.utah.gov/~2022/bills/static/SB0227.html
https://lis.virginia.gov/cgi-bin/legp604.exe?ses=212&typ=bil&val=Hb2307
https://lis.virginia.gov/cgi-bin/legp604.exe?ses=212&typ=bil&val=Hb2307
https://support.vungle.com/hc/en-us/articles/360054022852-How-to-merge-conflicts-manually-in-back-up-rules-xml-between-Vungle-and-AppsFlyer-Android-
https://support.vungle.com/hc/en-us/articles/360054022852-How-to-merge-conflicts-manually-in-back-up-rules-xml-between-Vungle-and-AppsFlyer-Android-
https://support.vungle.com/hc/en-us/articles/360054022852-How-to-merge-conflicts-manually-in-back-up-rules-xml-between-Vungle-and-AppsFlyer-Android-
https://support.vungle.com/hc/en-us/articles/360054022852-How-to-merge-conflicts-manually-in-back-up-rules-xml-between-Vungle-and-AppsFlyer-Android-

	Introduction
	Background
	Duress Attacks on Android
	Raising Priority of Malicious Libraries
	Insecure Resource Deduplication
	Insecure Resource Merge

	Methodology
	Identifying Sensitive Resource Types
	Library and App Analysis

	Findings and Analysis
	Landscape
	Causal Analysis
	Responsible Disclosure
	Case Studies
	Potential Mitigation

	Discussion
	Related Work
	Conclusion

